
Department of Informatics
Technical University of Munich

Bachelor’s Thesis in Informatics

Memory Augmented Conditional Autoencoder
for Anomaly Detection
Speichererweiterter Konditioneller Autoencoder zur
Anomaliedetektion

Supervisor Prof. Dr.-Ing. habil. Alois C. Knoll

Advisor Raven Reisch, M.Sc.

Author Leon Zamel

Date August 15, 2021 in Garching

Disclaimer

I confirm that this Bachelor’s Thesis is my own work and I have documented all sources and
material used.

Garching, August 15, 2021 (Leon Zamel)

Abstract

In this thesis, a method for anomaly detection based on memory augmented autoencoder
(MemAE) is investigated. We first analyze the inner structure of MemAE and how it learns
during training, and compare its performance to regular autoencoder (AE). Then, we propose
two methods to extend its usage. Firstly, we introduce conditional MemAE (C-MemAE) – a
modified memory structure to allow for conditional training. By using multiple memory
modules, the condition is used to control which one of these is addressed. We find that
its performance is similar to that of regular MemAE and outperforms it in certain cases.
Secondly, we show different approaches of memory initialization, to use MemAE for few-shot
learning, which outperforms transfer learning on regular AEs and is better than regularly
trained MemAE for difficult to learn data. Lastly, we combine both extensions and explore
how synergy effects can increase performance when using C-MemAE for few-shot learning.

Zusammenfassung

In dieser Arbeit wird eine Methode zur Anomaliedetektion mithilfe von speicheraugmen-
tierten Autoencodern untersucht (MemAE). Zuerst analysieren wir die Funktionsweise des
MemAE genauer und vergleichen die Ergebnisse mit denen regulärer Autoencoder (AE). An-
schließend führen wir zwei Erweiterungen dieses Systems ein. Erstens erläutern wir die
Funktionsweise des konditionellen MemAEs (C-MemAE), eine Anpassung der Speicherstruk-
ture, welche konditionelles Trainieren ermöglicht. Dazu werden mehrere Speichermodule
verwendet, für welche die Kondition das korrekte Modul auswählt. Diese Variante liefert ähn-
liche Ergebnisse zum normalen MemAE und schneidet in manchen Fällen besser ab. Zweitens
zeigen wir mehrere Varianten, um den Speicher von MemAE für few-shot learning zu initial-
isieren. Diese Methoden sind besser als transfer learning für normale autoencoder und sind
in einigen Fällen besser als ein vollständig trainierter MemAE. Zuletzt verbinden wir die bei-
den Erweiterungen und zeigen auf, wie Synergieeffekte die Anomaliedetektion verbessern
können, wenn C-MemAE für few-shot learning verwendet wird.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Anomaly detection . 1
1.1.2 Autoencoders . 2

1.2 Problem statement . 3
1.3 Objective . 3

2 Related work 4
2.1 Anomaly detection with autoencoders . 4
2.2 Memory-augmented neural networks . 5
2.3 Memory-augmented autoencoder . 5

2.3.1 Retrieving samples from memory . 6
2.3.2 Ensuring sparsity of memory addressing . 6

2.4 Learning memory-guided normality for anomaly detection 7
2.5 Memory-augmented methods for few-shot learning 7

3 Methods and material 8
3.1 Adaption of MemAE . 8
3.2 Conditional training . 9

3.2.1 C-MemAE . 9
3.2.2 CAE . 10

3.3 Few-shot learning . 10
3.3.1 Transfer learning . 10
3.3.2 Deleting memory . 11
3.3.3 Copying training samples into memory . 11

3.4 Combining conditional training and few-shot learning 11
3.4.1 Copying memory entries from conditional memory 11
3.4.2 Deleting memory . 12
3.4.3 Copying training samples into memory . 12

3.5 Training and testing . 12
3.6 Evaluating results . 13

3.6.1 Visualizing singular memory entries . 13
3.6.2 Memory change over time . 13
3.6.3 Memory access . 14

3.7 Experiment setup . 14
3.7.1 Comparison of AE and MemAE . 14
3.7.2 Hyperparameter analysis . 15
3.7.3 Comparison of CAE and C-MemAE . 16
3.7.4 Few-shot learning . 16

Contents v

4 Evaluation 17
4.1 Results . 17

4.1.1 Comparison of AE and MemAE . 17
4.1.2 Hyperparameter analysis on MemAE . 19
4.1.3 Comparison of CAE and C-MemAE . 27
4.1.4 Few-shot learning . 30

4.2 Discussion . 35
4.2.1 Comparison of AE and MemAE . 35
4.2.2 Hyperparameter analysis on MemAE . 36
4.2.3 Comparison of CAE and C-MemAE . 37
4.2.4 Few-shot learning . 38

5 Conclusion 40
5.1 Summary . 40
5.2 Future work . 41

A Appendix 1 42

Bibliography 46

Chapter 1

Introduction

1.1 Motivation

Due to an increasing amount of data, it is becoming more important to have automated
systems, which can assist humans with the task of drawing meaningful conclusions from it.
In particular, anomalous data can be of interest, as it can indicate unforeseen or unwanted
events. One method to detect these is by using autoencoders. This method is not without its
problems, however.

In this chapter, we will first elaborate on anomaly detection and autoencoders, potential
problems of them, and a novel method to alleviate some of its shortcomings. Lastly, we
introduce open questions, on how to apply this novel method to new tasks.

1.1.1 Anomaly detection

Anomaly Detection is the process of detecting samples within a data set that do not conform
to the structure of normal data. These methods have been used to detect fraud, faulty ma-
chinery, and diseases [CBK09; CC19]. It is therefore very valuable to detect these anomalies,
to intervene and explore the cause for them.

While humans are very good at finding patterns and detecting non-conforming data, the
sheer amount of data nowadays makes it impossible to do this manually. It might also be
difficult to define clear rules by which data is identified as anomaly, which makes it infeasible
to define programs manually to do this task. Additionally, noisy data or systematic influ-
ences may make the task more challenging, as clear boundaries cannot be defined [CBK09;
van+17].

To resolve this problem, applying machine learning techniques has been a promising ap-
proach. By simply providing data to the algorithm for training, it automatically learns the
features of normal data to successfully solve the task.

Depending on the availability of labeled data for the task, anomaly detection may be cat-
egorized further into three categories [CBK09; CC19]. Supervised anomaly detection requires
that labeled data is available for normal and anomalous data. Semi-supervised anomaly de-
tection, which we focus on, assumes that only samples of normal data are available. This
approach is very flexible, as it does not rely on having labeled anomalies, which may be diffi-
cult to collect because they are usually, by definition, much more seldom. It is also unrealistic
to know up-front every type of anomaly that may occur. On the other hand, it is a reasonable
expectation to have a decent amount of normal data samples, which can be collected from

1.1 Motivation 2

Encoder Decoder

Latent
Space

Encoding
Input Output

Figure 1.1: A schematic showing the idea of autoencoder. An encoder compresses high-dimensional data to a
low-dimensional encoding in latent space. The decoder attempts to decompresses the code to reconstruct the
original data. In this example, an image of the digit "2" is reconstructed. Note that in reality the number of input
and output neurons would be much larger for such images.

"daily occurrence". Additionally, methods that work well in a semi-supervised setting may
also be easily extended to the third category, unsupervised anomaly detection. In this setting,
there are no labels for the data, meaning that the algorithm is trained on normal and anoma-
lous data alike. However, if it can be assumed that normal data is much more common, this
approach is similar in nature to semi-supervised detection.

1.1.2 Autoencoders

An autoencoder (AE) is an artificial neural network with the goal to reproduce a given data
sample as closely as possible, while usually being constrained by an information bottleneck.
It therefore must automatically find a compressing encoding for the data.

AE consists of two main parts which are usually trained in tandem; an encoder and a
decoder. Each part usually consists of multiple layers. During training, samples are fed to
the encoder, which outputs a vector in feature/latent space. This vector is then decoded by
decoder and the output is compared to the input. Via a loss function, also called dissimilar-
ity or distortion function [Bal12], the error from reconstruction is then used to improve the
weights of the neural network during backpropagation via gradient descent. By constraining
the dimensionality of the latent space, the en- and decoder must extract meaningful features
from the usually high-dimensional input data. The dimensions in latent space therefore rep-
resent high-level features of the data. A simplified example is shown in Figure 1.1. An image
of a hand-written "2" is supplied as data to an autoencoder which was trained on these types
of images. The image is encoded to a vector, which is the latent space representation of the
sample. This vector is then decoded again to an image which resembles the input.

As the specific structure of the en-/decoder is arbitrary, by using applicable structures such
as, e.g., 2D convolutional layers for images, autoencoders can be applied to a wide range of
data.

1.2 Problem statement 3

1.2 Problem statement

To use an autoencoder for anomaly detection, it is first trained with normal data samples, of
which the inherent structure is then learned. When fed with anomalous data, it is expected
that the reconstruction is more error-prone than for normal data, as the underlying structure
is different than usual. By setting an appropriate error threshold, anomalies can be discerned
from regular data.

In practice, however, especially with powerful architectures as convolutional neural net-
works (CNNs), even anomalies can sometimes be reconstructed reasonably well, meaning
that the error is not noticeably higher than for normal data, such that samples are classi-
fied incorrectly. One way to limit this, is to adjust the dimensionality of the latent space to
increase the constraints of the bottleneck. This requires many experiments and rigorous hy-
perparameter tuning. Therefore, we utilize the memory-augmented autoencoder (MemAE)
introduced by Gong et al. [Gon+19], which makes use of a memory, that learns the typical
features of normal data, and therefore helps increase the reconstruction error of anomalous
data.

For some applications, data we receive is conditioned by some other variable. For exam-
ple, electrocardiograms are influenced by age and sex of the individual [van+17; Mac18].
For these configurations, the structure of data will also change – what is anomalous for one
setting might be normal for another setting, and vice versa. Optimally, instead of using sev-
eral models, one for each setting, the system can share the general learned structure between
conditions, and the condition can be supplied to the anomaly detection system as another in-
put, without the need for multiple systems.

Closely connected to this goal is the process of few-shot learning (FSL), where only few
data samples available, making it difficult to learn a general structure of the data. As we
would ideally want to reuse general knowledge from a model trained on other data, this can
be achieved by adapting an existing model for the new data.

Combining conditional learning with few-shot learning follows quickly from this. It could
happen, for example, that a new condition is added for which none or only very few data
samples are known. It would be beneficial to use information from existing conditions to get
a better "starting position" for the training on the new condition in a few-shot way.

1.3 Objective

In this paper, we first analyze MemAE, a novel approach for applying autoencoders to anomaly
detection, which uses a memory in latent space, and compare it to regular AE. Then we an-
alyze the effect of multiple different hyperparameters on its performance. Furthermore, we
extend the system to make it applicable for conditional settings and propose several ways to
use it for few-shot learning. Lastly, we combine conditional and few-shot learning to utilize
synergy effects and improve performance for few-shot learning over regular autoencoders
and MemAEs alike.

Chapter 2

Related work

2.1 Anomaly detection with autoencoders

Due to increasing computing power, deep learning methods have proven successful in a broad
number of settings [Rus16; LBH15], and even surpass human-level performance in some
tasks [He+15].

Autoencoder (AE) [BH89] is one such deep learning method. We define the learning task
analogously to [Gon+19; Bal12] by the domain of data samples X = Rn and the domain of
the latent space Z = Rp, where usually n ≫ p for a compressing encoding. We define the
encoder as fe : X → Z and the decoder as fd : Z → X. Encoding takes a sample x ∈ X to a
feature space encoding z ∈ Z and decoding takes a code from latent space bz ∈ Z back to input
space bx ∈ X:

z= fe(x;θe), (2.1)
bx= fd(bz;θd), (2.2)

where θe and θd are parameters of the en- and decoding function. For a training data set
St rain ⊆ X, containing T =| St rain | number of samples, the task of finding a suitable en- and
decoder is to find parameters which minimize the loss:

arg minθe ,θd

∑

x∈St rain

L(x, fd(fe(x;θe);θd)), (2.3)

for a loss function L. In its simplest form, this function measures the difference between an
input x and the reconstruction bx, such that the identity function is learned.

To utilize AE for anomaly detection, it is only trained on normal samples. Therefore, it is
expected that the reconstruction error of anomalies is larger than that of normal data, which
can be used as a detection signal. This assumption has been questioned, however, as complex
neural networks are able to reconstruct anomalies with low error [Gon+19]. Additionally,
the performance of AE may be severely influenced by the underlying data. This leads to
desirable detection results for some classes of a data set, but unsatisfactory for others, when
one class has complex features that are missing in the other class [Fin+21]. The AE trained
on complex data generalizes well to more simple data, leading to very accurate reconstruction
on all data and bad anomaly detection performance. On the contrary, an AE trained on simple
data fails in the reconstruction of complex (anomalous) data, leading to a high reconstruction
error for anomalies, and therefore good results.

2.2 Memory-augmented neural networks 5

Input Output

En
co

de
r

D
ec

od
er

w Òw Memory M

Sparsity

.

...

Memory module

Memory
Addressing

x

z

fe fd

bz

bx

Figure 2.1: Schematic of MemAE. The input is encoded and used as a query to address entries of a memory.
The retrieved memory entries are combined and then decoded.

2.2 Memory-augmented neural networks

Memorizing capacity was introduced to deep networks via recurrent neural networks (RNNs)
and memory cells in the form of long short-term memory (LSTM) [HS97].
However, these memories represent "internal" memory that is usually very small in size.
Graves et al. introduce the Neural Turing Machine, which uses an external memory ma-
trix and a memory controller as described in [GWD14]. One way to read this memory, is
via a content based focusing method, which uses the cosine similarity score to determine the
relevance of memory entries for some input. The retrieved information is then output as a
convex combination of the utilized memory rows. Analogously, memory networks [WCB14]
make use of a memory as an array of objects. Both of these methods allow for element-wise
addressable memory entries, similar in design to random access memory (RAM) found in
modern computers.

2.3 Memory-augmented autoencoder

Gong et al. [Gon+19] introduce Memory-augmented Autoencoder (MemAE) for anomaly
detection, to alleviate the aforementioned generalization problem with regular AE. As seen
in Figure 2.1, in addition to the en- and decoder, a memory module is added between these
two components. A data sample passes through the encoder as usual. In latent space, the
encoded sample is used to query the most similar entries from memory. By combining the
retrieved samples, a new feature vector is constructed, which is then decoded. The memory
is only updated during training, together with the en- and decoder, and is optimized for
accurate reconstruction. Unlike in regular AE, where the encoded sample gets passed to the
decoder directly, i.e., z= bz, this does not hold for MemAE.

As only normal data is supplied during training, the memorized samples should contain
features of normal data. During evaluation, if an anomalous sample is encountered, the

2.3 Memory-augmented autoencoder 6

memory should be unable to find similar entries. Consequently, the best fitting samples will
represent normal data, which will then be decoded. The difference between input and output
should thus be higher for anomalous than for normal data.

Formally, the memory is defined as a matrix M ∈ RN×C , interpreted as N row vectors
of dimension C . We will refer to N as the memory size and the row vectors as (memory)
entries. For simplicity, it is assumed that C = p, meaning that memory entries have the same
dimensionality as encoded samples.

2.3.1 Retrieving samples from memory

To retrieve fitting items from memory, the encoded sample z is used as a query. Similarly to
the process for Neural Turing Machines, Gong et al. propose to use cosine similarity (cs) as a
metric to determine the best fitting entries. For two vectors a and b it is computed as

cs(a,b) =
a · b
∥a∥∥b∥

. (2.4)

After measuring the similarity between all memory items and the encoded sample, the result-
ing vector is then normalized via the softmax function σ : RK → [0, 1]K , defined for a vector
v ∈ RK as

σ(v)i =
exp(vi)
∑K

j=1 exp(v j)
∀i ∈ [K]. (2.5)

Using these functions, an addressing vector w = (w1, w2, ..., wN) ∈ R1×N is constructed. Let
mi ∈ R1×C be the i-th row vector in M,∀i ∈ [N]. The corresponding addressing vector for an
encoded sample z and memory M is calculated as

wi =
exp(cs(z,mT

i))
∑N

j=1 exp(cs(z,mT
j))
∀i ∈ N . (2.6)

A value wi can thus be interpreted as how well the i-th memory entry matches the encoded
sample, z and is also referred to as attention weight. To then create bz, we retrieve memorized
items and take the linear combination of them, based on the attention weight row vector w:

bz=wM=
N
∑

i=1

wimi . (2.7)

2.3.2 Ensuring sparsity of memory addressing

Given the previously described method, it might still be possible to recreate any vector z,
given enough memory items. This defeats the purpose of the memory. Gong et al. propose
to use two additional methods to ensure sparsity of the attention weights. By having sparse
addressing vectors, only a few memory entries are used to reconstruct the sample, meaning
that each memory item is more likely to represent a normal data sample individually.

Hard shrinkage

The first method to induce sparsity, is to apply a hard shrinkage operation on w, before using
it for addressing, which sets weights lower than the shrink threshold λ to zero, resulting in a

2.4 Learning memory-guided normality for anomaly detection 7

new row vector Òw, where each entry bwi, ∀i ∈ N , is computed as

bwi = h(wi;λ) =

¨

wi , if wi > λ,

0, otherwise.
(2.8)

For the hyperparameter λ, Gong et al. suggest a value in the interval [1/N , 3/N]. From our
experiments, this range indeed increased sparsity, but did not always yield the best results,
see section 4.1. Because the sum of entries from Òw might not be equal to one anymore, the
vector is normalized again afterwards, to receive the final addressing vector:

bwi =
bwi

∥Òw∥
∀i ∈ N . (2.9)

Entropy minimization

The second method utilized by Gong et al. is to increase sparsity during training. By con-
structing an error term which decreases with an increase in sparsity, loss minimization will
automatically also induce sparseness. We calculate the Shannon entropy E of a weight vector
Òw as

E(Òw) = −
N
∑

i=1

bwilog2(bwi). (2.10)

By including this error term in the minimization objective, scaled by some factor α, a lower
entropy is automatically induced, and with it an increased sparsity of the attention weights.
Gong et al. propose 0.0002 as value for α.

2.4 Learning memory-guided normality for anomaly detection

Another approach using a memory in latent space for anomaly detection with AE is intro-
duced in [PNH20]. Similarly to MemAE, a cosine similarity vector is used as basis for mem-
ory addressing.
Unlike for MemAE, the query vector is additionally supplied to the decoder. Additionally, the
memory is still updated during test time. To prevent anomalies from updating the memory, a
regular score is used to determine if updates should take place. The authors propose feature
compactness and separateness loss to induce variety of learned memory entries, similar to
the sparseness introduced for MemAE. Results indicate performance better than MemAE for
selected settings on video data sets.

2.5 Memory-augmented methods for few-shot learning

Using methods from memory-augmented neural networks (MANNs), one-shot learning is
demonstrated in [San+16] with state of the art results. Similarly to previous methods, cosine
similarity is also used together with linear combination to address and combine memory
entries. Using MANNs for meta-learning, Santoro et al. have demonstrated a way to reduce
the gap between human and machine learning, when only few data samples are available.

Another approach to use a memory for few-shot learning is presented by Kasier et al.
[Kai+17]. The memory is used to reliably memorize rare events, even when these are only
encountered once and when this occurrence was a long time ago. Additionally, the authors
introduce a new benchmark which requires "life-long one-shot learning", showing that previ-
ous methods fail on this task.

Chapter 3

Methods and material

In this chapter, we first introduce an adaptation method of the en- and decoder structures
proposed by Gong et al. We then introduce a way to extend MemAE for conditional and
few-shot learning and how to combine these. Lastly, we introduce methods to analyze the
memory of MemAE and our methodology for training, testing/validating, and running exper-
iments.

3.1 Adaption of MemAE

As basis for our further work, we mostly follow the approach by Gong et al. In their paper,
they use, among others, the MNIST and CIFAR-10 data sets, containing images of handwritten
digits 0-9, and planes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks, respec-
tively. For these they propose convolutional networks for the en- and decoder, with which
the images are effectively down-sampled to tensors in RH×W×C , which can be interpreted as
images with height H, width W , and channels/number of features C . In the original method,
every one of these H ∗W C-dimensional vectors corresponds to a vector z, which are passed
through the memory module individually. This implies that the memory contains feature vec-
tors for different areas of an image. From our testing, it seems beneficial to instead "collapse"
these contextual dimensions. The feature tensor will thus only contain singleton dimensions
except for the feature dimension. This way the memory contains entries which can encode
an entire input at once.

We achieve this by an additional layer which down-samples the tensor further. In our
example, a 2D convolutional layer of kernel size H × W would achieve this. Effectively,
the autoencoder can itself learn which weight should be given to each part of the image.
We in turn increase the number of features from C to H ∗W ∗ C so that the same amount of
information is contained in the encoding. The memory size is decreased from the original size
N to N

H∗W such that it contains the same amount of information. This approach is analogously
applicable to time series and video input. We refer to these adapted models as the "flat"
variant.

Adding the additional convolutional layer will also be applied to regular AE for compari-
son.

3.2 Conditional training 9

3.2 Conditional training

We propose a method that adapts any existing MemAE to make it conditional. I.e., we now
include another categorical variable y ∈ Y for each input, for some set of values Y. We as-
sume that this set is fixed at length Y =| Y |, however, we show that for our method this
set may be extended after training. For comparison, we also explain an approach to make
regular AE conditional.

During training, we assume that y will be supplied for every data sample individually. For
the MNIST and CIFAR-10 data set, this value will simply be the class that we are currently
training on. For example, if we conditionally train on the digits "1" and "2" from the MNIST
data set, the autoencoder will receive batches that contain samples of both classes with their
corresponding labels. This allows for the most flexibility, as the condition doesn’t have to be
fixed for one batch. Due to the interleaving samples, we might also expect that the encoder
and decoder generalize better.

During testing, there are two different approaches. The first expects the condition to be
known, such that it can be supplied to the system just like in training. The second approach
assumes that the condition cannot be supplied, because it is not known, for example. In this
case, the autoencoder should make the best judgment on the class. We focus on the former
case, but our proposed method for conditional MemAE allows for both settings.

3.2.1 C-MemAE

As a flexible approach that is applicable to any en-/decoder structure, we propose using
multiple memory modules, one for each condition. A sample is processed by each module,
after which the correct memory output is selected via a multiplexer. The multiplexer is either
controlled by the condition y, if it is known, or some selection metric. A schematic of this
conditional MemAE (C-MemAE) is shown in Figure 3.1. While it might seem inefficient to
always process a sample with every memory module, in practice, the time needed by the
memory module is very small as shown by Gong et al. Our training for AE and MemAE
has also completed in roughly equal time, with MemAE needing slightly longer. In turn, the
system is generalized from a software engineering perspective, and also allows to use efficient
vectorized operations more easily.

If the condition is not known, the concrete selection metric can have a large effect on the
performance of this method. The metric can be seen as a form of clustering in latent space.
One possible idea would be to chose the memory module which maximizes the sum of cosine
similarities for all memory entries, this can be efficiently done if the calculated values inside
the module get passed outwards. As the latent space of (Mem)AEs is still largely unexplored,
we haven’t explored this direction further. However, clustering in latent space also possibly
allows for new anomaly detection methods, see section 5.2 for more information.

With the proposed method, the original encoding and decoding networks remain un-
touched. Even existing MemAEs can theoretically be extended to work conditionally, by
simply copying the memory entries of an existing MemAE and creating new memory mod-
ules as needed.

3.3 Few-shot learning 10

Memory
Module 2

.

.

.

Memory
Module 1

Input

x

Condition

Output

M
ul

ti
pl

ex
er

En
co

de
r

D
ec

od
er

Se
le

ct
io

n
m

et
ri

c

Memory
selection
method

fe

y

bz2

bz1

bzY

fd bx

Memory
Module Y

bzz

Figure 3.1: Schematic of C-MemAE. An encoding passes through multiple memory modules, one for each possi-
ble condition. The correct output is selected via a multiplexer that is either controlled by the condition, if it is known,
or a selection metric.

3.2.2 CAE

To have a reference point for C-MemAE we will adapt AE to conditional AE (CAE). We do
this by adding fully connected layers in feature space. By one-hot encoding the condition, we
then concatenate this vector to the encoded feature vector to "mix in" the condition. This also
makes the approach applicable to CNNs, if the encoding is flattened, as described earlier. One
immediate drawback compared to C-MemAE is that it is unclear how to easily add another
condition afterwards or how to deal with an unknown condition.

3.3 Few-shot learning

For few-shot learning, we will first train models fully on one class and then use this model
and have it learn anomaly detection for a new class. For AE we simply use the fully trained
model without any change. For MemAE we propose three different approaches, which will
be elaborated on in the following subsections.

3.3.1 Transfer learning

The most straight-forward approach is the same as for AE. We use a MemAE that has been
trained on one class and then train it on a new class. Like with AE, we expect that some of
the en-/decoder structure can be reused, as some intermediate-level features of, e.g. images,
are usable across classes. In the example, these features may include the detection of straight
lines, curves, blobs, etc. The memory will also contain the content for the previously learned
class. We assume that this approach should take the longest to adapt to a new class.

3.4 Combining conditional training and few-shot learning 11

3.3.2 Deleting memory

Instead of using the same memory as in transfer learning, another method is to delete the
memory, i.e., re-initializing it to a random state and only reusing the en- and decoder. Due
to the more uniform entries of the memories, we expect the memory to adapt more quickly
than in transfer learning.

3.3.3 Copying training samples into memory

As we assume that there are only very few samples to learn from, we can encode these and
then write the encoded feature vectors directly into memory. Assuming we have T training
samples in St rain, we initialize the memory M ∈ RT×C as

mt = fe(x
t ;θe), where {xt}Tt=1 = St rain. (3.1)

Meaning that memory entry t will be the encoding of the t-th training sample. This con-
straints the memory size to be equal to the number of training samples, i.e., N = T . The
MemAE is then trained like the two previously mentioned methods.

3.4 Combining conditional training and few-shot learning

We now look into ways to combine conditional training with few-shot learning. For FSL it
seems sensible that an autoencoder which generalized well will be a better starting point
than an autoencoder which only works well for very specialized data. We therefore use
conditionally trained C-MemAEs for few-shot learning as these must have learned to en- and
decode some general high-level features which are usable for multiple classes. As in the
unconditional case, we inspect three different general methods.

It should be noted that there are two ways for training C-MemAEs on new classes. We
could train a new unconditional MemAE for just one class, or we could extend the C-MemAE
with the new class as a new condition. We assume the former case. Both cases contain very
similar steps except for the consideration if a new "normal" memory must be initialized, or if
the conditional memory must be expanded. All presented methods would easily transfer to
the latter case.

3.4.1 Copying memory entries from conditional memory

As we now train for a new class, but have a memory for each previously trained on condition,
it is not possible to simply reuse the conditionally trained memory like in transfer learning.
Instead, we select some memory entries from the conditional memory and copy them into
the new memory. Memory entries are chosen based on how well they fit the training samples.
For this we encode all samples and for each sample determine the memorized feature vector
which fits best. This is determined as the memory entry which has the maximum cosine
similarity to the encoded sample. This method changes a conditional memory to a normal
one with size equal to the number of samples.

3.5 Training and testing 12

3.4.2 Deleting memory

Analogously to the unconditional case, we can simply use a new memory, i.e., when reusing
the model, we simply delete the conditional memory and replace it with a new (uncondi-
tional) memory that is initialized at random.

3.4.3 Copying training samples into memory

This method works completely analogously to the unconditional case, however, the condi-
tional memory has to be replaced by an unconditional memory, and only then can the en-
coded training samples can be copied to memory. From an implementation standpoint, this
can be seen as applying the "deleting memory" method to get an unconditional memory and
then filling it by using the method for the unconditional case described above, and will also
be listed as such in our experiments.

3.5 Training and testing

To evaluate the methods, we conduct various tests with multiple different hyperparameters,
while utilizing our newly introduced methods for analyzing the memory.

We focus on the data sets also used by Gong et al., MNIST and CIFAR-10. As an error
metric for reconstruction, we utilize the mean squared error. For a data sample x and its
reconstruction bx, it is thus defined as:

R(x,bx) = ∥x− bx∥22 . (3.2)

Together with the entropy loss, scaled by a factor α, these two terms will constitute our loss
function.

The data set S is split into a training and testing/validation set, making sure that there is
no overlap, i.e., St rain ⊆ S, Stest ⊆ S, and St rain ∩ Stest = ;. The training objective for MemAE
becomes:

argminθe ,θd ,M

∑

x∈St rain

R(x,bx) +αE(Òw). (3.3)

According to Gong et al. α= 0.0002 is a value which works well in practice. We will also use
this setting.

For training, we follow the approach of picking one (or more for conditional training)
class which is interpreted as normal, and every other class as being an anomaly. E.g. for
the MNIST data set, we choose the two as being normal, and train the autoencoder on only
samples labeled as a two (the normal data). For conditional training, the different classes
are presented in no particular order. If the conditions are two and eight, for example, both
classes will be contained in the training batches with their respective labels as condition.

For validating/testing, we take the testing data set which contains samples from all classes
and create a data set for each class that the autoencoder was trained on. This will be just
one for regular training, but can be multiple for the conditional case. Following the approach
of Gong et al., we fix the anomaly proportion at 0.3. In the non conditional example from

3.6 Evaluating results 13

above, during testing the autoencoder would thus see a sample representing a two around
70% of the time, and another digit the other 30% of the time. in the conditional example
there are two tests sets. For one the the proportion of twos would be 70% and in the other the
proportion of eights would be 70%. Note that during testing, samples from other conditions
can appear as anomalies. In the example, an eight could appear as an anomaly when testing
on twos, and vice versa.

To benchmark the performance, we calculate the reconstruction error for every sample of
the test set and fit the values to a [0, 1] interval. We subtract these values from one to get the
confidence that a sample is normal:

c = 1−
l −min(l)

max(l)−min(l)
, ∀l ∈ l where l= {R(x,bx) : x ∈ Stest}. (3.4)

Using these confidence values, we use the Area Under the Receiver Operation Characteristic
curve (AUROC) as a metric to evaluate the performance.

As the performance may fluctuate over epochs, we will take the maximum over all epochs
as the final score. This somewhat emulates early stopping and gives us the best achievable
result for each AE. However, as this approach may be different than in other papers, caution
is advised when comparing the resulting scores.

To account for random fluctuations, tests are run multiple times with differing random
seed values, but using the same seeds when comparing different methods. The results are
then averaged.

3.6 Evaluating results

To get more in-depth insight into the previously mentioned systems, we deploy multiple
methods to interpret how the memory works and affects the output.

3.6.1 Visualizing singular memory entries

During training, we expect the memory to learn the structure of normal data. To validate
this assumption, we can chose single memory entries and decode them. For our image data
sets, ff the assumption is true, the decoded memory entries should resemble images of the
learned class(es). Due to the removal of contextual dimensions in latent space explained
earlier, every memory entry should contain complete information to fully represent a typical
image.

3.6.2 Memory change over time

To analyze how MemAE’s memory changes over time, we save the model at regular intervals
while training. To compare two checkpoints, we calculate the cosine similarity for each pair
of same memory entries for the two checkpoints, so the i-th memory entry me

i at epoch e will
be compared to the i-th memory entry me′

i at epoch e′. As the cosine similarity value may be
negative, we first add one and then divide by two, such that a cosine similarity of negative
one corresponds to similarity zero. We take the mean of this change over all memory entries.

3.7 Experiment setup 14

By subtracting the final value from one, we get a value which represents the average memory
change from one checkpoint to another.

3.6.3 Memory access

To determine how the memory gets accessed, we will encode individual samples with the
MemAE and keep track of the attention weight vector w. We look at which values its entries
assume and how these change after the softmax and hard shrinkage operation.

3.7 Experiment setup

In the following, we describe the concrete hyperparameters, model architectures, and further
necessary information to replicate our results. These values will be used throughout unless
specifically noted otherwise.

All implementations are done in Python using PyTorch [Pas+19]. To improve repro-
ducibility and extendibility, we utilize PyTorch Lightning [Fal19]. For better experiment man-
agement and configuration, we use Hydra [Yad19].

The datasets used are MNIST [Yan98] and CIFAR-10 [KH+09]. We use the train/test split
given by the PyTorch data package. The images are processed for MNIST by normalizing
them using the mean and standard deviation of the training set, as the data set is highly
synthetic. For CIFAR-10, we take 0.5 as mean and standard deviation for normalizing, as the
images are of natural occurrence. During testing, the proportion of anomalies is fixed at 30%.

As an optimizer, following Gong et al., we use Adam with a learning rate 0.0001 and set
α = 0.0002. The models are trained for 100 epochs and validated/tested after every epoch
with the entire validation/testing data set. We use a training batch size of 64.

To account for random deviations we average the results over multiple runs by changing
the random seed. Each experiment is run with the same seeds for every method. In particu-
lar, the samples used during few-shot learning are the same between all experiments.

Our tests were done on a computer with an NVIDIA GeForce GTX 1660 super graphics
card, Intel Core i7 4770K and 16 GB RAM.

3.7.1 Comparison of AE and MemAE

For both data sets we use the neural network structure given by Gong et al. as basis. The
model structures are given by sequential layers, we use the variable notation i: in channels,
o: out channels, k: kernel size, s: stride, p: padding, and op: output padding.

As layer notation we use:

• Conv2d(i, o, k, s, p): 2D convolutional layer

• ConvTranspose2d(i, o, k, s, p, op): 2D convolutional transpose layer

3.7 Experiment setup 15

For MNIST we use the following model structures for en- and decoder:
Encoder:

Conv2d(1,32,3,2,1)
Conv2d(32,16,3,2,1)
Conv2d(16,8,3,3,1)

Decoder:

ConvTranspose2d(8,16,3,3,1,0)
ConvTranspose2d(16,32,3,2,1,1)
ConvTranspose2d(32,1,3,2,1,1)

This structure is used for the non-flat variants of MemAE and AE. Additionally, for MemAE
the memory size used is 100 and we set the shrink threshold as recommended by Gong et al.
at 1/N to 0.01.

For the flat variant, we add an additional Conv2d layer with kernel size three to the en-
coder. To roughly account for the factor 9 decrease in encoding features, we increase the
number of features from 8 to 64. The memory size is decreased from 100 to 10 for the flat
MemAE. We leave all other parameters equal. As model structure for en- and decoder on
CIFAR-10 we use:
Encoder:

Conv2d(3,64,3,2,1)
Conv2d(64,128,3,2,1)
Conv2d(128,128,3,2,1)
Conv2d(128,256,3,2,1)

Decoder:

ConvTranspose2d(256,128,3,2,1,1)
ConvTranspose2d(128,128,3,2,1,1)
ConvTranspose2d(128,64,3,2,1,1)
ConvTranspose2d(64,3,3,2,1,1)

For MemAE, the memory size is set at 500 with a shrink threshold of 0.002.
The resulting tensor of the non-flat autoencoder in latent space has a size of 2× 2. We there-
fore add another Conv2d layer with kernel size 2. To reduce model size, however, instead
of scaling the feature dimension by 4, we keep it as is and instead have the second to last
layer keep the feature dimension of 128, and instead use output feature size 256 in the newly
added layer. The memory size is decreased by a factor of 4 to a size of 125.

For both data sets, each layer is followed by a 2D batch normalization and leaky ReLU
layer with negative slope 0.2, except for the last decoder layer. The full model configuration
can be found in the accompanying code.

As the flat en-/decoder structures yielded good results from preliminary testing, these
were used for hyperparameter tests, conditional, and few-shot learning experiments.

3.7.2 Hyperparameter analysis

To analyze the effect the memory size and shrink threshold have on MemAE, we use the
MemAE flat as baseline, with a memory size 10 and shrink threshold 0.01 for MNIST, and
memory size 125 with shrink threshold 0.002 for CIFAR-10. We fix one of these values and
then adjust the other to see its effect, all else being equal. For the memory size, we chose two
values below the baseline and two above, with the highest being such that 1/N equals the
learning rate. For the shrink threshold, we also chose values below and above the baseline,
such that it was 1/N . This was done to test the recommendation of Gong et al. We focused
mainly on values below the range, as higher values gave worse results from preliminary test-
ing.

To analyze the memory change over time, the model is saved at the very beginning, be-
fore the first training epoch, and every 5 epochs. This is to decrease the memory footprint as
opposed to saving weights after every epoch.

3.7 Experiment setup 16

Class combination Reasoning

0,1 Both perform very well individually
1,7 Both perform fairly well individually, images have a similar structure
1,8 Class 1 performs very well, while class 8 performed the worst
2,8 The two worst performing classes individually
3,4 Both classes had average results
5,6 The classes had average results and contain similar structures
7,9 Both classes performed somewhat above average, for completeness

Table 3.1: Class combinations used for conditional training on MNIST and the reason for the choice.

Class combination Reasoning

Plane,Bird Good performance on Plane, decent performance of Bird
Car,Deer Car performed the worst and Deer the best
Car,Truck The two worst performing classes
Cat,Dog Both classes performed averagely
Deer,Ship The two best performing classes
Frog,Horse For completeness

Table 3.2: Class combinations used for conditional training on CIFAR-10 and the reason for the choice.

3.7.3 Comparison of CAE and C-MemAE

For conditional learning, as it is computationally intensive to combine all different classes
with each other, we instead use classes which yield interesting combinations of scores and
structure of data. The classes and reasoning for MNIST is found in Table 3.1. For CIFAR-10,
as the images are all of natural occurrence, we make no claims about the similarity of classes.
The choice of classes is found in Table 3.2.

As model structure for CAE, we add two additional fully connected layers, each followed
by leaky ReLU, to the flat AE model from above. The first layer has as size the dimension-
ality of latent space, plus the number of conditions, such that the condition can be one-hot
encoded and concatenated with the encoding. The second layer has as in- and output size
equal to the number of features.

3.7.4 Few-shot learning

For few-shot learning, we use a fully trained autoencoder for every previous class, and then
continue training with it on every of the 10 classes again. We use 10 random samples and
two different learning rates of 0.001 and 0.0001, and train over 50 epochs. We had to limit
training time due to computing constraints. However, performance mostly converged by this
point. We always used the last checkpoint as starting point to continue training. This was
done to provide equal starting conditions for every model type as they were trained for the
same duration and to focus on the learning during the few-shot phase and not any "residual"
learning of earlier, uncompleted training. Another approach could be to take the best per-
forming checkpoint for each model.

Chapter 4

Evaluation

4.1 Results

In the following, we present the results from multiple experiments, first to get a baseline of
how MemAE compares to regular AE with and without changes made to the en- and decoder.
Then, we inspect MemAE further by analyzing the effects of the memory size and shrink
threshold, while taking a closer look at the memory and its role in reconstructing images. We
then test conditional training methods and again compare multiple different AE and MemAE
variants. Lastly, we experiment with few-shot learning and FSL on C-MemAE, to furthermore
understand how the memory may benefit learning.

4.1.1 Comparison of AE and MemAE

We first compare regular AE and MemAE directly, using non-flat versions, as proposed by
Gong et al., and the adapted, "flat", versions.

We see the results in Figure 4.1 and Figure 4.2, which show AUROC scores for each model
type across one axis, and the class which was fixed as normal on the other axis. It can be seen
that for both data sets certain classes are easier to distinguish than others. These "easy" and
"hard" classes are consistent between all autoencoders. For the MNIST data set, we see from
Figure 4.1 that performance is worst when digits 2 and 8 are normal, while performance is
best for 0 and 1.

For the CIFAR-10 data set, classes car and truck performed worst, followed by the class
horse. Some scores are below 0.5, the significance of this value is discussed later. Perfor-
mance on classes deer and ship is best. These easy and difficult classes were again consistent

0 1 2 3 4 5 6 7 8 9

Class

AE

AE
flat

MemAE

MemAE
flat

M
o
d

el
T

y
p

e

0.989 0.999 0.891 0.958 0.951 0.955 0.974 0.963 0.844 0.957

0.995 0.999 0.916 0.965 0.955 0.967 0.985 0.968 0.859 0.969

0.989 0.999 0.885 0.953 0.948 0.951 0.975 0.956 0.832 0.952

0.995 0.999 0.921 0.949 0.96 0.962 0.988 0.972 0.887 0.971 0.85

0.90

0.95

Figure 4.1: AUROC scores for different classes and model types of the MNIST data set.

4.1 Results 18

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

AE

AE
flat

MemAE

MemAE
flat

M
o
d

el
T

y
p

e
0.696 0.368 0.667 0.614 0.753 0.607 0.677 0.489 0.719 0.389

0.71 0.386 0.68 0.591 0.76 0.571 0.688 0.49 0.749 0.417

0.689 0.368 0.668 0.584 0.751 0.569 0.677 0.493 0.725 0.4

0.72 0.441 0.681 0.582 0.779 0.561 0.707 0.522 0.769 0.456
0.4

0.5

0.6

0.7

Figure 4.2: AUROC scores for different classes and model types of the CIFAR-10 data set.

Figure 4.3: Input and reconstruction by autoencoders on normal data (class plane) on top and anomalous data
(class horse) on the bottom. From left to right: the input, the reconstruction of AE, AE flat, MemAE, MemAE flat.

over all model types. We see an example for reconstruction for the autoencoders in Figure 4.3.
They were trained on the plane class and then performed reconstruction on an image of a
plane as normal data (top row) and on that of a horse as anomalous (bottom row). The
images from left to right are: input, reconstruction of AE, AE flat, MemAE, MemAE flat. Re-
construction by AE is clearest, followed by MemAE, AE flat and MemAE flat.

We now look at learning curves during training, as shown in Figure 4.4. From Figure 4.4a
we see that learning quickly converges, but is unstable, especially for MemAE flat. In Fig-
ure 4.4b we see the reconstruction error for normal data and in Figure 4.4c for anomalous
data. The error for AE is smallest, followed by MemAE, AE flat and MemAE flat, confirming
the observation of the reconstructions above.

Comparing mean AUROC scores over all classes, as seen in Table 4.1, the flat versions
perform better than the non-flat versions. MemAE only performed better than AE for the flat
en-/ decoder structure. The scores are lower than those achieved by Gong et al., except for
the flat MemAE on the CIFAR-10 data set. However, there were strong fluctuations during
training which could be the cause for this result, as we take the maximum score over all
epochs.

4.1 Results 19

0 25 50 75 100

Epoch

0.4

0.5

0.6

0.7
A

U
R

O
C

S
co

re

Model Type

AE

AE flat

MemAE

MemAE flat

(a) AUROC scores.

0 25 50 75 100

Epoch

0.0

0.1

0.2

0.3

R
ec

o
n

st
ru

ct
io

n
E

rr
or

Model Type

AE

AE flat

MemAE

MemAE flat

(b) Reconstruction error for normal data.

0 25 50 75 100

Epoch

0.0

0.1

0.2

0.3

R
ec

o
n

st
ru

ct
io

n
E

rr
or

Model Type

AE

AE flat

MemAE

MemAE flat

(c) Reconstruction error for anomalies.

Figure 4.4: Learning curves for the deer class of CIFAR-10 with multiple autoencoder model types.

MNIST CIFAR
Model Type

AE 0.9482 0.5980
AE flat 0.9577 0.6042
MemAE 0.9441 0.5924
MemAE flat 0.9602 0.6218

Table 4.1: The mean over all classes for the maximum of AUROC scores over all epochs. Comparison between
different autoencoder variants for the MNIST and CIFAR-10 data set.

4.1.2 Hyperparameter analysis on MemAE

In the following, we analyze the impact of the memory size and shrink threshold on MemAE
using the flat variant.

Memory size analysis

AUROC scores First we look at the AUROC scores for various memory sizes. For MNIST, as
can be seen in Table 4.2a, if the memory size is too low, the performance quickly drops off.
However, it also drops off for a value too high, i.e., 100. Additional tests on higher memory
sizes yielded even worse performance.

Comparing the AUROC scores along different classes for MNIST, as seen in Figure 4.5,

AUROC Score
Memory Size

4 0.9247
7 0.9530
10 0.9602
50 0.9606
100 0.9586

(a) Mean AUROC scores for MNIST.

AUROC Score
Memory Size

40 0.6038
75 0.6139
125 0.6218
250 0.6350
500 0.5981

(b) Mean AUROC scores for CIFAR-10.

Table 4.2: The mean AUROC scores over all classes for different memory sizes on both data sets.

4.1 Results 20

0 1 2 3 4 5 6 7 8 9

Class

4

7

10

50

100

M
em

or
y

S
iz

e
0.973 0.999 0.855 0.903 0.922 0.918 0.968 0.947 0.828 0.934

0.995 0.999 0.905 0.936 0.945 0.954 0.988 0.969 0.873 0.966

0.995 0.999 0.921 0.949 0.96 0.962 0.988 0.972 0.887 0.971

0.995 0.999 0.924 0.961 0.956 0.966 0.988 0.972 0.876 0.97

0.995 0.999 0.918 0.956 0.96 0.966 0.987 0.967 0.872 0.967 0.85

0.90

0.95

Figure 4.5: Comparison of AUROC scores between classes and memory sizes for the MNIST data set.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

40

75

125

250

500

M
em

or
y

S
iz

e

0.697 0.4 0.679 0.577 0.76 0.56 0.706 0.503 0.734 0.422

0.715 0.412 0.681 0.593 0.768 0.565 0.701 0.513 0.756 0.435

0.72 0.441 0.681 0.582 0.779 0.561 0.707 0.522 0.769 0.456

0.744 0.448 0.688 0.585 0.786 0.568 0.734 0.526 0.779 0.491

0.688 0.392 0.675 0.565 0.755 0.542 0.706 0.505 0.722 0.432
0.4

0.5

0.6

0.7

Figure 4.6: Comparison of AUROC scores between classes and memory sizes for the CIFAR-10 data set.

shows that there are certain optimal settings for different classes. E.g., the digit eight seems
to perform best with a medium memory size of 10, while the digit two performs best with
size 50.

Similarly, for the CIFAR-10 data set, an increase in memory size also decreases perfor-
mance at some point. Table 4.2b shows an increase of scores up to a memory size of 250, but
a drop in performance for size 500.

Analyzing the AUROC scores for every class confirms this trend for the different classes in-
dividually as well, as seen in Figure 4.6, only for a few class- and memory size-combinations
do we see an exception to this rule.

Memory change For the MNIST data set, we observe from Figure 4.7a how the memory
changes over training epochs. At each epoch, the value indicates the change between the
memory at that point and five epochs earlier. As can be seen, the largest change takes place
within the first few epochs and then quickly drops off. This trend can be seen across all mem-
ory sizes. The memory change decreases with an increase of memory size, up to memory size
100, where it increases drastically.

These results are similar to those for the CIFAR-10 data set. As seen in Figure 4.7b, for
a memory size of 500, the memory changes most. The memory change again is strongest in
the beginning and then drops off over time.

For both datasets, there was no clear correlation between certain classes and memory
change.

4.1 Results 21

0 20 40 60 80 100

Epoch

0.000

0.001

0.002

0.003

0.004

0.005

0.006
M

ea
n

M
em

or
y

C
h

a
n

g
e

Memory Size

4

7

10

50

100

(a) MNIST memory change.

0 20 40 60 80 100

Epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
ea

n
M

em
o
ry

C
h

an
g
e

Memory Size

40

75

125

250

500

(b) CIFAR-10 memory change.

Figure 4.7: Measuring MemAE flat’s memory change over time as average over all classes and memory entries
for several memory sizes. A value for an epoch indicates the change between that point and five epochs earlier.

Inspecting the memory entries for the various different memory sizes can be seen in Fig-
ure 4.8, exemplified for the digit "9" of MNIST. Each row contains decoded samples from a
MemAE for a fixed memory size. The memory sizes from top to bottom are 4, 7, 10, 50, and
100. As can be seen, the smallest memory contains clear structures of the digit nine. For a
memory size of seven, the images become more abstract but seem to indicate some common
features such as the "stem" or "head" of the digit. This trend can also be seen for memory
size 10, although some entries seem to exclusively make sense if combined with others as
they contain untypical features, such as the two "legs" seen in the first image in the row. For
memory size 50, there are samples which display a "9" but also some which only contain
fragments of a nine. After increasing the memory size to 100, clarity of images increases
again.

In contrast to this, Figure 4.9 shows 10 randomly decoded memory items for the class
"Plane" from CIFAR-10. Again, for each row one memory size is fixed. The rows show images
for the memory sizes, from top to bottom, 40, 75, 125, 250, and 500. While the color spec-
trum covers the most common colors to be expected for images of planes, no memory item
alone seems to be sufficient in representing such an image.

Memory access Lastly, we observe the memory access for different memory sizes. We
exemplify this for CIFAR-10. In Figure 4.10 we see three different stages for the attention
weight vector for two different memory sizes. The left column shows values for a memory
size of 250, the right column for a size of 500. The top row shows the values of the raw
attention weight vector, i.e., after the cosine similarity calculation. The middle row shows
the vector after applying softmax. The bottom row shows the final attention weight after
applying the hard shrinkage. Along the x-axis is the index, along the y-axis the value for that
vector entry. Before applying softmax, multiple attention weights have negative values. After
applying softmax, the values of the vectors all fall within a slim range around one divided by
the memory size. The shrinkage only has an effect on the MemAE with memory size of 500,
as only there the values drop below the shrink threshold of 0.002.

4.1 Results 22

Figure 4.8: Visualizing memory entries by decoding them for a flat MemAE trained on the digit 9 of MNIST. Shown
are up to 6 decoded memory entries for different memory sizes. Memory sizes for each row from top to bottom
are 4, 7, 10, 50, and 100.

Figure 4.9: Visualizing memory entries by decoding them for a flat MemAE trained on plane images from CIFAR-
10. Shown are 10 decoded memory entries for different memory sizes. Memory sizes for each row from top to
bottom are 40, 75, 125, 250, and 500.

4.1 Results 23

0 50 100 150 200 250
Index

0.2

0.1

0.0

0.1

0.2

Va
lu

e

0 100 200 300 400 500
Index

0.2

0.1

0.0

0.1

0.2

Va
lu

e

0 50 100 150 200 250
Index

0.000

0.001

0.002

0.003

0.004

0.005

Va
lu

e

0 100 200 300 400 500
Index

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Va
lu

e

0 50 100 150 200 250
Index

0.000

0.001

0.002

0.003

0.004

0.005

Va
lu

e

0 100 200 300 400 500
Index

0.000

0.001

0.002

0.003

0.004

0.005

Va
lu

e

Figure 4.10: Visualizing different steps in memory access for a flat MemAE trained on CIFAR-10. The left column
shows values for a memory size of 250, the right column for a size of 500. The top row shows the values of the
raw attention weight vector, i.e., after cosine similarity calculation. The middle row shows that vector after applying
softmax. The bottom row shows the final attention weights after applying the hard shrinkage. Along the x-axis is
the index, along the y-axis the value for that vector entry. The shrink threshold only has an effect for memory size
500, as only there the values drop below the shrink threshold of 0.002.

4.1 Results 24

AUROC Score
Shrink Threshold

0.002 0.9600
0.010 0.9602
0.050 0.9600
0.080 0.9499
0.100 0.9340

(a) Mean AUROC scores for MNIST.

AUROC Score
Shrink Threshold

0.0001 0.6239
0.0005 0.6238
0.0020 0.6218
0.0080 0.5964
0.0100 0.5981

(b) Mean AUROC scores for CIFAR-10.

Table 4.3: The mean AUROC scores over all classes for different shrink thresholds on both data sets.

0 1 2 3 4 5 6 7 8 9

Class

0.002

0.01

0.05

0.08

0.1

S
h

ri
n

k
T

h
re

sh
ol

d

0.995 0.999 0.921 0.948 0.959 0.962 0.988 0.972 0.886 0.971

0.995 0.999 0.921 0.949 0.96 0.962 0.988 0.972 0.887 0.971

0.995 0.999 0.921 0.949 0.959 0.962 0.987 0.972 0.887 0.971

0.993 0.999 0.898 0.938 0.95 0.946 0.986 0.963 0.864 0.963

0.985 0.999 0.86 0.917 0.935 0.921 0.971 0.954 0.859 0.94

0.90

0.95

Figure 4.11: Comparison of AUROC scores between classes and shrink threshold values for MemAE trained on
MNIST.

Shrink threshold analysis

AUROC scores For MNIST, the shrink threshold value made no difference on AUROC scores
up to a value of 0.08, as seen in Table 4.3a. This value would is near the range suggested by
Gong et al. for the memory size of 10. However, the two highest shrink thresholds yielded
worse performance than the lower ones. The impact on individual classes varied, as seen
in Figure 4.11. The least change, none at all, was on class one, the strongest effect was a
decrease of around 0.06 on class two with an increase of the shrink threshold.

For CIFAR-10, we observe some similar effects from the scores in Table 4.3b. Once the
shrink threshold reaches a value such that it is around 1/N , namely for shrink threshold
0.008, the score decreases significantly. However, for an even higher shrink threshold, the
scores increase slightly again.

The AUROC scores for each class are listed in Figure 4.12. We again see that optimal set-
tings vary between classes. The truck class performed best with the highest shrink threshold,
for example.

Additionally, the AUROC scores are also much more stable than for low shrink thresholds,
containing less random spikes. Instead, there are some "steps" in which the score changes
strongly between two epochs and then stays at that score for some time. Typical learning
curves are found in Figure A.1.

Memory change The memory change over time indicates similar results to those for dif-
ferent memory sizes. The largest change took place during the beginning, quickly dropping
off afterwards. For MNIST, the shrink threshold value of 0.1 yields a memory change much
higher than for the lower thresholds, as seen in Figure 4.13a. This is again when the shrink

4.1 Results 25

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

0.0001

0.0005

0.002

0.008

0.01

S
h

ri
n

k
T

h
re

sh
o
ld

0.719 0.436 0.683 0.587 0.773 0.567 0.706 0.525 0.772 0.47

0.721 0.426 0.685 0.595 0.777 0.568 0.707 0.525 0.768 0.467

0.72 0.441 0.681 0.582 0.779 0.561 0.707 0.522 0.769 0.456

0.696 0.398 0.671 0.548 0.764 0.538 0.709 0.503 0.722 0.416

0.64 0.441 0.659 0.535 0.74 0.501 0.714 0.509 0.719 0.523
0.4

0.5

0.6

0.7

Figure 4.12: Comparison of AUROC scores between classes and shrink threshold values for the CIFAR-10 data
set.

0 20 40 60 80 100

Epoch

0.000

0.002

0.004

0.006

0.008

M
ea

n
M

em
o
ry

C
h

an
ge

Shrink Threshold

0.002

0.01

0.05

0.08

0.1

(a) MNIST memory change.

0 20 40 60 80 100

Epoch

0.0000

0.0005

0.0010

0.0015

0.0020

M
ea

n
M

em
o
ry

C
h

an
g
e

Shrink Threshold

0.0001

0.0005

0.002

0.008

0.01

(b) CIFAR-10 memory change.

Figure 4.13: Measuring MemAE flat’s memory change over time as average over all classes and memory entries
for several shrink threshold values. A value for an epoch indicates the change between that point and five epochs
earlier.

threshold is around 1/N .

For CIFAR-10, the memory change is seen in Figure 4.13b. We observe as a new phe-
nomenon here that memory change increases over time for a shrink threshold of 0.01. This
was not the case in any other test.
Similarly to MNIST, we see that once again the memory change is largest at the beginning
and then drops off. The change is the same for multiple shrink thresholds but increases a lot
for the values 0.008 and 0.01.

As the AUROC scores drastically changed for a higher shrink threshold value of 0.1 for
MNIST, we decoded all 10 memory items for this MemAE, as seen in Figure 4.14. Each row
shows results for a different class which the MemAE was trained on. We can clearly see that
almost all memory items completely represent a typical sample. For the same memory size
and lower shrink threshold, we saw from row 3 in Figure 4.8 that this was not the case there.

Memory access Lastly, we observe the memory access and decoding capability exemplified
for the MNIST class "9" with the shrink thresholds 0.05 and 0.1. The three rows in Figure 4.15
show the attention weight vector at the start, after taking the softmax of it, and after applying
the hard shrinkage. In the left column for the low and in the right column for the high shrink

4.1 Results 26

Figure 4.14: Decoding every memory item for 10 different MemAEs, each one trained on a different class of
MNIST with a shrink threshold of 0.1. Almost all entries fully represent a typical training sample.

4.1 Results 27

threshold. Again, multiple entries are negative, directly after calculating the cosine similarity.
For the low shrink threshold, even though the last entry has very negative similarity, it is used
for querying the memory as the value is positive in the end. For the high shrink threshold,
the first memory is especially well-fitting. Only this entry gets used to retrieve an entry from
memory.

The input and output for this example can be seen in Figure 4.16. The leftmost image
shows the input, the middle image the reconstructed image for shrink threshold 0.05, and
the right image shows the reconstruction with shrink threshold 0.1. We see that since only
exactly one memory item was accessed for the shrink threshold of 0.1, the reconstructed
item corresponds with the very first memory entry seen earlier in Figure 4.14 for digit nine.
The digit reconstructed by the MemAE with shrink threshold 0.05 resembles the input more
closely, especially the squished "head" of the digit.

4.1.3 Comparison of CAE and C-MemAE

Now we compare the performance of C-MemAE to that of conditional autoencoder (CAE).
Note that in graphs and tables, C-MemAE will be referred to as MemAE flat and CAE as AE
flat. This is because the overall en-/decoder structure used is still the same as before. The
only differences are the changes in latent space, which once again highlights the flexibility of
the approaches.

For MNIST, we see the AUROC scores in Figure 4.17. Along the y-axis we see the two
different model types. Along the x-axis we first see the classes that the model was trained on
and then the condition which was fixed during testing. For example, "0,1 - 0" means that the
model was conditionally trained on 0 and 1, and was then tested on the class 0. So the class
0 was fixed as normal and all other classes were considered anomalous.

We see that the C-MemAE outperforms the CAE for every class. Again, we also observe
that the classes 2 and 8 are the most difficult to learn. For CAE we observe that in every com-
bination at most one of the two classes performs well, e.g., for classes 0 and 1 the anomaly
detection works well for condition 1 but not for 0.

For C-MemAE, when comparing the results to normal MemAE, scores are very similar. In
some cases C-MemAE slightly outperforms MemAE, e.g., for class 2, but performs slightly
worse for other digits such as the 9. For classes 1 and 7, the score for condition 7 is also
noticeably higher than for the same condition for combination 7,9.

To understand what happens during reconstruction, we look at an example for input and
output pairs. Figure 4.18 shows images from each class in the top row. We supply these to a
CAE and C-MemAE which which were trained on classes 0 and 1. We see the reconstructions
from the CAE in the middle two rows and for the C-MemAE in the two rows at the bottom.
For the reconstructed images, each upper row shows the results when setting the condition
to 0 and the lower row when setting 1 as condition.
For CAE, the reconstructions consistently contains features of a zero or one, with the con-
dition having little effect. For C-MemAE, the output always represents the class which the
condition was set to. This effect is most clearly visible for the input images for zero and one.
The CAE accurately reconstructs the image, i.e., when a 0 is supplied and the condition is set
to 1, meaning that a 1 should be reconstructed for high reconstruction error, it still recon-
structs a 0. Vice versa for an input of a 1 and condition set to 0. C-MemAE, on the other
hand, reconstructs the class which the condition was set to.

For CIFAR-10, the AUROC scores are reported in Figure 4.19. Again, classes which had

4.1 Results 28

0 2 4 6 8
Index

0.6

0.4

0.2

0.0

0.2

Va
lu

e

0 2 4 6 8
Index

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

0 2 4 6 8
Index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Va
lu

e

0 2 4 6 8
Index

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Va
lu

e

0 2 4 6 8
Index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Va
lu

e

0 2 4 6 8
Index

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Figure 4.15: Visualizing different steps in memory access on MNIST. The left column shows values for a shrink
threshold value of 0.05, the right column for a value of 0.1. The top row shows the values of the raw attention
weight vector, i.e., after cosine similarity calculation. The middle row shows that vector after applying softmax.
The bottom row shows the final attention weights after applying the hard shrinkage. Along the x-axis is the index
of the vector, along the y-axis the value for that entry. The shrink threshold only has an effect for memory size 500.

4.1 Results 29

(a) Input image of a 9 from the
MNIST data set.

(b) Reconstruction for MemAE
with shrink threshold 0.05

(c) Reconstruction for MemAE
with shrink threshold 0.1

Figure 4.16: Reconstructing the image on the left with MemAE. The middle image is the reconstruction with shrink
threshold 0.05, on the right using a value of 0.1.

0,1
- 0

0,1
- 1

1,7
- 1

1,7
- 7

1,8
- 1

1,8
- 8

2,8
- 2

2,8
- 8

3,4
- 3

3,4
- 4

5,6
- 5

5,6
- 6

7,9
- 7

7,9
- 9

Classes - Condition

AE
flat

MemAE
flatM

o
d

el
T

y
p

e 0.895 0.997 0.994 0.871 0.996 0.796 0.808 0.742 0.801 0.879 0.891 0.945 0.927 0.901

0.997 0.999 0.999 0.98 0.999 0.889 0.928 0.88 0.95 0.966 0.957 0.99 0.965 0.967 0.8

0.9

Figure 4.17: AUROC scores for different classes and conditions of CAE and C-MemAE on MNIST.

Figure 4.18: Results from reconstructing images with a CAE and C-MemAE conditionally trained on classes 0
and 1. The top row shows the input images. The middle two rows display the reconstruction by CAE. The images
in the bottom rows were reconstructed by C-MemAE. For the reconstructions, the images of the upper row were
outputs when setting the condition to 0, the lower row when setting it to 1. For CAE the condition has little effect.
C-MemAE consistently reconstructs an image corresponding to the condition.

4.1 Results 30

Plane,
Bird

- Plane

Plane,
Bird

- Bird

Car,
Deer
- Car

Car,
Deer

- Deer

Car,
Truck
- Car

Car,
Truck

- Truck

Cat,
Dog
- Cat

Cat,
Dog

- Dog

Deer,
Ship

- Deer

Deer,
Ship

- Ship

Frog,
Horse
- Frog

Frog,
Horse

- Horse

Classes - Condition

AE
flat

MemAE
flatM

o
d

el
T

y
p

e 0.663 0.66 0.341 0.728 0.363 0.413 0.568 0.538 0.719 0.666 0.661 0.481

0.708 0.679 0.392 0.765 0.44 0.448 0.588 0.546 0.757 0.718 0.704 0.506
0.4

0.6

Figure 4.19: AUROC scores for different classes and conditions of CAE and C-MemAE on CIFAR-10.

bad performance before still perform the worst when training conditionally. Also, like for
MNIST, C-MemAE performs better than CAE for every class.

For both data sets, there does not seem to be a clear influence by the combination of
specific difficult or easy classes. E.g., combining the classes car and deer again led to the
result that the performance is bad on class car but good on class deer. For C-MemAE, the
results were again close to the regularly trained MemAE.

4.1.4 Few-shot learning

First, we look at the AUROC scores from few-shot learning. In Table 4.4, we see the average
results for several different methods and learning rates. These are the averages over all prior
classes that training continued from and the newly learned class.
We see that the results for the low learning rate are lower than that of the high learning rate.
For the low learning rate, the difference in scores between AE and MemAE is lower than for
the higher learning rate.

For MNIST, when observing the results of the higher learning rate, the AUROC scores for
MemAE are best for the variant where the training samples are copied, closely followed by
the memory deleting method. Transfer learning, i.e., not modifying the previously trained
model at all, performs worst by a significant amount for both model types.

When comparing the scores by class, we get a matrix for each combination of learning
rate, model type, and few-shot method as seen in Figure 4.20.
For a given combination of learning rate, model type, and training method, we see the AUROC
scores for combinations of the previous class, i.e. the class the former model was trained on,
and the class trained on in a few-shot way.

For the transfer learning methods, we clearly see higher than average scores along the
diagonal, i.e., where the previously learned and newly learned classes align. For the higher
learning rate, however, we see that the performance deteriorated in some cases along this
diagonal, compared to the scores achieved by regular training. Transfer learning from and to
class 8 only slightly improved scores for the lower learning rate and decreased them with a
higher learning rate compared to the fully trained model.

The classes 2 and 8 are difficult to learn, as before. Additionally, class 5 performs much
worse than in regular training. Class 0, which performed very well before, also has much
more average results after few-shot learning. Performance on class 8 exceeds that of regular
training in certain cases.

For multiple previous classes, with a learning rate of 0.001, MemAE performs better com-
pared to when it was fully trained on class 8, with the deleted memory and with copied

4.1 Results 31

MNIST CIFAR-10
Learning Rate Model Type Few-Shot Method

0.0001 AE flat Transfer Learning 0.7540 0.5409
MemAE flat Copy Samples 0.7565 0.6224

Delete Memory 0.7714 0.5954
Transfer Learning 0.7814 0.5562

0.0010 AE flat Transfer Learning 0.8419 0.5931
MemAE flat Copy Samples 0.9068 0.6516

Delete Memory 0.9032 0.6355
Transfer Learning 0.8713 0.6186

Table 4.4: Mean AUROC values over all previous and newly learned classes for various few-shot learning settings
and model types on both data sets.

samples. Reaching a score higher than 0.887.

For CIFAR-10, from the AUROC scores we observe a similar pattern to MNIST. From Ta-
ble 4.4 we learn that, again, the higher learning rate achieves higher results and even achieves
better scores than regular training, when comparing the averages. The methods which per-
formed best are different than for MNIST for the lower learning rates. For CIFAR-10, for both
learning rates, copying the samples directly into memory of MemAE worked best, followed
by deleting the memory, and lastly transfer learning.

Comparing the scores for each class combination shows that classes car, cat, dog, horse,
and truck again performed the worst. For transfer learning, the diagonal entries are not al-
ways better compared to other combinations. Deleting the memory and copying samples both
significantly increased the score on the truck class, outperforming regularly trained methods.
The scores can be found in Figure A.2.

Additionally, an example of a typical AUROC score curve is seen in Figure 4.21, which
was averaged over all previous classes on the newly learned class ship. We see that there are
some early spikes for some combinations, after which the scores gradually converge.

Conditional few-shot learning

In Table 4.5, we see the AUROC scores of few-shot learning with C-MemAE for various meth-
ods. Similarly to few-shot learning with MemAE, an increase of the learning rate again
increases the scores.

For MNIST, simply deleting the memory performs best for the lower learning rate. For the
higher learning rate, either deleting the memory or copying the training samples into memory
worked well. We compare AUROC scores for different class combinations in Figure 4.22.
Shown are for each learning rate and learning method the AUROC scores for combinations
of previous classes and newly learned classes.

When simply copying the best fitting entries from the conditional memory, for the low
learning rate we sometimes observe slight above average scores where the previous class and
new class overlap. This is observable for the previous classes 2 and 8, achieving the best
scores for the class 2 and 8 for that method, such as 5 and 6 performing best for those two

4.1 Results 32

0 1 2 3 4 5 6 7 8 9

Class

0
1

2
3

4
5

6
7

8
9

P
re

v
io

u
s

C
la

ss

0.994 0.986 0.711 0.786 0.773 0.698 0.882 0.845 0.673 0.853

0.471 0.999 0.557 0.666 0.769 0.611 0.612 0.824 0.568 0.772

0.506 0.992 0.911 0.653 0.65 0.514 0.697 0.877 0.533 0.791

0.6 0.992 0.702 0.96 0.665 0.727 0.745 0.843 0.606 0.761

0.565 0.994 0.448 0.544 0.964 0.599 0.795 0.831 0.65 0.863

0.828 0.992 0.62 0.842 0.75 0.963 0.906 0.845 0.639 0.816

0.747 0.99 0.653 0.604 0.843 0.635 0.985 0.795 0.661 0.848

0.545 0.992 0.538 0.608 0.81 0.569 0.795 0.975 0.616 0.873

0.691 0.991 0.595 0.691 0.836 0.728 0.738 0.823 0.852 0.85

0.544 0.993 0.549 0.573 0.843 0.553 0.778 0.884 0.603 0.969

0.0001 - AE flat - Transfer Learning

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0
1

2
3

4
5

6
7

8
9

P
re

v
io

u
s

C
la

ss

0.735 0.976 0.642 0.721 0.82 0.675 0.837 0.818 0.635 0.764

0.506 0.969 0.592 0.521 0.804 0.597 0.656 0.81 0.629 0.756

0.645 0.982 0.672 0.792 0.823 0.639 0.735 0.862 0.607 0.835

0.809 0.983 0.709 0.728 0.778 0.678 0.81 0.861 0.664 0.799

0.555 0.976 0.7 0.717 0.799 0.639 0.571 0.858 0.661 0.801

0.738 0.962 0.867 0.728 0.768 0.671 0.755 0.868 0.635 0.802

0.693 0.976 0.788 0.707 0.833 0.666 0.859 0.788 0.761 0.794

0.802 0.979 0.706 0.671 0.819 0.64 0.729 0.868 0.635 0.823

0.781 0.986 0.679 0.741 0.794 0.686 0.827 0.898 0.716 0.832

0.529 0.984 0.684 0.647 0.782 0.626 0.696 0.841 0.633 0.81

0.0001 - MemAE flat - Copy Samples

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0
1

2
3

4
5

6
7

8
9

P
re

v
io

u
s

C
la

ss

0.855 0.978 0.671 0.745 0.796 0.744 0.787 0.831 0.708 0.8

0.655 0.964 0.613 0.627 0.765 0.695 0.764 0.844 0.59 0.798

0.824 0.974 0.703 0.681 0.819 0.662 0.826 0.892 0.666 0.825

0.773 0.967 0.753 0.732 0.792 0.688 0.786 0.826 0.601 0.771

0.732 0.973 0.68 0.585 0.779 0.687 0.752 0.811 0.61 0.764

0.796 0.966 0.671 0.751 0.713 0.687 0.759 0.877 0.643 0.791

0.8 0.977 0.709 0.729 0.777 0.692 0.81 0.846 0.719 0.787

0.782 0.98 0.659 0.679 0.847 0.653 0.794 0.875 0.635 0.841

0.799 0.975 0.691 0.729 0.844 0.693 0.819 0.873 0.73 0.85

0.829 0.982 0.688 0.66 0.8 0.675 0.774 0.792 0.716 0.818

0.0001 - MemAE flat - Delete Memory

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0
1

2
3

4
5

6
7

8
9

P
re

v
io

u
s

C
la

ss

0.996 0.98 0.745 0.769 0.818 0.757 0.945 0.876 0.705 0.866

0.5 0.999 0.613 0.686 0.73 0.577 0.735 0.837 0.593 0.731

0.757 0.986 0.915 0.707 0.747 0.567 0.823 0.843 0.607 0.749

0.734 0.981 0.644 0.952 0.74 0.768 0.777 0.861 0.704 0.812

0.552 0.99 0.576 0.64 0.957 0.596 0.777 0.873 0.636 0.891

0.861 0.979 0.61 0.799 0.773 0.957 0.84 0.833 0.735 0.843

0.881 0.988 0.697 0.677 0.827 0.653 0.991 0.812 0.732 0.846

0.648 0.99 0.599 0.641 0.814 0.607 0.717 0.977 0.557 0.868

0.722 0.987 0.671 0.757 0.809 0.778 0.832 0.853 0.889 0.863

0.693 0.983 0.555 0.647 0.857 0.627 0.719 0.926 0.637 0.967

0.0001 - MemAE flat - Transfer Learning

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0
1

2
3

4
5

6
7

8
9

P
re

v
io

u
s

C
la

ss

0.988 0.995 0.796 0.804 0.838 0.794 0.907 0.898 0.725 0.873

0.817 0.999 0.713 0.796 0.862 0.758 0.851 0.88 0.673 0.853

0.785 0.996 0.878 0.791 0.798 0.701 0.866 0.906 0.666 0.856

0.875 0.994 0.749 0.921 0.829 0.783 0.889 0.913 0.691 0.878

0.851 0.995 0.667 0.797 0.939 0.744 0.834 0.897 0.713 0.888

0.917 0.996 0.71 0.81 0.835 0.936 0.897 0.888 0.685 0.885

0.884 0.995 0.749 0.762 0.828 0.765 0.967 0.884 0.742 0.872

0.822 0.994 0.726 0.796 0.873 0.72 0.885 0.959 0.695 0.899

0.904 0.994 0.741 0.777 0.865 0.77 0.879 0.906 0.803 0.879

0.876 0.994 0.719 0.749 0.857 0.745 0.862 0.906 0.723 0.958

0.001 - AE flat - Transfer Learning

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0
1

2
3

4
5

6
7

8
9

P
re

v
io

u
s

C
la

ss

0.93 0.994 0.882 0.908 0.906 0.786 0.966 0.92 0.891 0.898

0.895 0.994 0.897 0.881 0.905 0.785 0.962 0.924 0.825 0.913

0.936 0.995 0.851 0.888 0.906 0.791 0.952 0.94 0.852 0.912

0.958 0.995 0.869 0.891 0.899 0.813 0.944 0.937 0.887 0.911

0.915 0.994 0.841 0.899 0.882 0.764 0.96 0.913 0.908 0.912

0.962 0.994 0.916 0.889 0.909 0.79 0.967 0.918 0.878 0.902

0.941 0.992 0.881 0.906 0.9 0.805 0.965 0.932 0.862 0.911

0.947 0.992 0.861 0.898 0.925 0.784 0.97 0.929 0.913 0.922

0.948 0.994 0.825 0.892 0.894 0.802 0.972 0.951 0.867 0.908

0.933 0.995 0.877 0.897 0.895 0.797 0.959 0.938 0.878 0.914

0.001 - MemAE flat - Copy Samples

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0
1

2
3

4
5

6
7

8
9

P
re

v
io

u
s

C
la

ss

0.958 0.993 0.833 0.86 0.895 0.798 0.958 0.929 0.876 0.902

0.906 0.991 0.855 0.889 0.899 0.781 0.942 0.931 0.883 0.898

0.965 0.991 0.885 0.899 0.926 0.781 0.962 0.95 0.892 0.911

0.94 0.993 0.854 0.896 0.896 0.792 0.957 0.904 0.876 0.89

0.934 0.991 0.829 0.863 0.9 0.789 0.925 0.92 0.899 0.898

0.932 0.991 0.874 0.887 0.904 0.781 0.943 0.926 0.892 0.903

0.954 0.993 0.871 0.888 0.884 0.791 0.953 0.917 0.902 0.905

0.961 0.992 0.861 0.86 0.912 0.784 0.957 0.937 0.864 0.91

0.958 0.992 0.873 0.883 0.913 0.795 0.958 0.937 0.891 0.908

0.95 0.991 0.863 0.887 0.88 0.764 0.933 0.924 0.897 0.911

0.001 - MemAE flat - Delete Memory

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0
1

2
3

4
5

6
7

8
9

P
re

v
io

u
s

C
la

ss

0.985 0.995 0.806 0.819 0.875 0.809 0.96 0.907 0.757 0.902

0.89 0.999 0.782 0.807 0.839 0.771 0.922 0.909 0.707 0.858

0.93 0.996 0.878 0.822 0.86 0.748 0.923 0.921 0.768 0.882

0.904 0.994 0.757 0.906 0.871 0.808 0.921 0.912 0.798 0.894

0.846 0.996 0.767 0.816 0.922 0.779 0.887 0.922 0.742 0.917

0.885 0.995 0.749 0.814 0.857 0.881 0.936 0.902 0.817 0.906

0.96 0.996 0.795 0.807 0.859 0.773 0.974 0.904 0.809 0.884

0.864 0.995 0.766 0.832 0.881 0.798 0.935 0.96 0.78 0.894

0.908 0.994 0.77 0.846 0.874 0.807 0.905 0.914 0.868 0.915

0.914 0.995 0.771 0.828 0.889 0.773 0.92 0.943 0.748 0.957

0.001 - MemAE flat - Transfer Learning

0.5

0.6

0.7

0.8

0.9

Figure 4.20: AUROC scores for combinations of learning rate, model type, and few-shot learning method on
MNIST. Each plot shows results for one setting for every combination of the previously learned and newly learned
class.

4.1 Results 33

0 10 20 30 40 50

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

A
U

R
O

C
S

co
re

Learning Rate - Few-Shot Method - Model Type

0.0001 - Copy Samples - MemAE flat

0.0001 - Delete Memory - MemAE flat

0.0001 - Transfer Learning - AE flat

0.0001 - Transfer Learning - MemAE flat

0.001 - Copy Samples - MemAE flat

0.001 - Delete Memory - MemAE flat

0.001 - Transfer Learning - AE flat

0.001 - Transfer Learning - MemAE flat

Figure 4.21: AUROC scores as mean over all previous classes for few-shot learning on the ship class of CIFAR-
10.

MNIST CIFAR-10
Learning Rate Few-Shot Method

0.0001 Copy Best Fitting from Conditional Memory 0.7945 0.5903
Delete Memory, Copy Samples 0.7897 0.6082
Delete Memory 0.7935 0.5965

0.0010 Copy Best Fitting from Conditional Memory 0.8899 0.6214
Delete Memory, Copy Samples 0.9069 0.6450
Delete Memory 0.8954 0.6356

Table 4.5: Mean AUROC values over all previously and newly learned classes for various few-shot learning
settings on both data sets from a C-MemAE.

classes.

Comparing the scores for individual classes, we observer that again class 5 is difficult to
learn. When copying training samples with a high learning rate, on average, the scores on
class 5 are better, however, than for the few-shot learning methods on MemAE. The scores
are almost exclusively above 0.8 for the C-MemAE method, while this score was only seldom
reached for MemAE, and the best score on class 5 for C-MemAE, 0.823, is only beaten by
MemAE in the transfer learning setting where the previous and new class is 5.
This similarly holds for class 2 where C-MemAE few-shot learning performs very well with
certain methods and outperforms regularly trained MemAE in some cases.
For other classes, however, C-MemAE performed worse than MemAE, notably for classes 3
and 4. However, this depends on the exact method and learning rate compared.

For CIFAR-10, results averaged over all classes are seen in Table 4.5. Once again, the
increased learning rate also achieves better results. For the low learning rate, copying of
training samples performs best, followed by deletion of the memory. For the higher learning
rate, just like for MNIST, copying the best fitting memory entries performed worst and copy-

4.1 Results 34

0 1 2 3 4 5 6 7 8 9

Class

0,1

1,7

1,8

2,8

3,4

5,6

7,9

P
re

v
io

u
s

C
la

ss
es

0.841 0.991 0.643 0.731 0.823 0.722 0.837 0.89 0.629 0.818

0.541 0.99 0.589 0.718 0.831 0.652 0.721 0.885 0.64 0.868

0.709 0.988 0.697 0.797 0.782 0.672 0.843 0.885 0.726 0.817

0.723 0.991 0.716 0.81 0.83 0.729 0.875 0.872 0.785 0.864

0.709 0.982 0.633 0.816 0.862 0.706 0.842 0.877 0.68 0.857

0.854 0.987 0.692 0.843 0.85 0.736 0.915 0.889 0.732 0.859

0.709 0.982 0.638 0.707 0.86 0.636 0.778 0.889 0.706 0.919

0.0001 - Copy Best Fitting from Conditional Memory

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0,1

1,7

1,8

2,8

3,4

5,6

7,9

P
re

v
io

u
s

C
la

ss
es

0.723 0.985 0.615 0.754 0.693 0.681 0.822 0.853 0.719 0.75

0.93 0.986 0.568 0.778 0.708 0.736 0.729 0.873 0.574 0.798

0.583 0.985 0.612 0.668 0.777 0.671 0.792 0.886 0.646 0.821

0.882 0.987 0.736 0.818 0.859 0.704 0.881 0.882 0.765 0.861

0.668 0.987 0.724 0.86 0.827 0.692 0.816 0.889 0.697 0.857

0.849 0.974 0.767 0.732 0.795 0.694 0.807 0.892 0.667 0.809

0.941 0.987 0.607 0.87 0.843 0.679 0.759 0.881 0.74 0.876

0.0001 - Delete Memory, Copy Samples

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0,1

1,7

1,8

2,8

3,4

5,6

7,9

P
re

v
io

u
s

C
la

ss
es

0.764 0.985 0.669 0.693 0.835 0.618 0.82 0.833 0.632 0.802

0.756 0.986 0.647 0.677 0.846 0.674 0.805 0.875 0.66 0.844

0.746 0.988 0.713 0.712 0.828 0.695 0.835 0.873 0.745 0.84

0.876 0.986 0.74 0.771 0.856 0.719 0.865 0.894 0.803 0.872

0.786 0.982 0.708 0.738 0.87 0.694 0.867 0.901 0.728 0.857

0.786 0.986 0.646 0.707 0.839 0.655 0.87 0.852 0.714 0.837

0.742 0.983 0.623 0.704 0.822 0.676 0.763 0.871 0.698 0.857

0.0001 - Delete Memory

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0,1

1,7

1,8

2,8

3,4

5,6

7,9

P
re

v
io

u
s

C
la

ss
es

0.953 0.995 0.848 0.895 0.907 0.817 0.954 0.922 0.879 0.903

0.894 0.996 0.792 0.887 0.917 0.754 0.949 0.934 0.831 0.9

0.942 0.996 0.868 0.873 0.873 0.792 0.946 0.916 0.831 0.885

0.965 0.995 0.801 0.874 0.894 0.792 0.958 0.922 0.817 0.901

0.924 0.993 0.802 0.838 0.877 0.782 0.954 0.927 0.831 0.894

0.943 0.993 0.792 0.872 0.903 0.839 0.965 0.923 0.818 0.912

0.89 0.994 0.779 0.821 0.891 0.81 0.934 0.902 0.798 0.927

0.001 - Copy Best Fitting from Conditional Memory

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0,1

1,7

1,8

2,8

3,4

5,6

7,9

P
re

v
io

u
s

C
la

ss
es

0.967 0.994 0.865 0.89 0.911 0.799 0.975 0.933 0.881 0.909

0.957 0.995 0.824 0.864 0.901 0.815 0.966 0.932 0.86 0.913

0.929 0.995 0.86 0.867 0.907 0.787 0.974 0.923 0.871 0.91

0.973 0.995 0.83 0.893 0.916 0.811 0.966 0.937 0.867 0.892

0.93 0.994 0.864 0.889 0.906 0.809 0.971 0.926 0.877 0.909

0.954 0.994 0.884 0.855 0.912 0.823 0.948 0.917 0.888 0.912

0.97 0.995 0.792 0.905 0.921 0.785 0.964 0.932 0.886 0.916

0.001 - Delete Memory, Copy Samples

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

Class

0,1

1,7

1,8

2,8

3,4

5,6

7,9

P
re

v
io

u
s

C
la

ss
es

0.93 0.992 0.838 0.878 0.893 0.787 0.973 0.914 0.875 0.893

0.93 0.996 0.805 0.866 0.856 0.783 0.937 0.915 0.882 0.904

0.955 0.994 0.817 0.867 0.872 0.785 0.947 0.918 0.871 0.896

0.964 0.994 0.814 0.888 0.904 0.782 0.948 0.917 0.909 0.907

0.923 0.993 0.855 0.856 0.897 0.79 0.955 0.933 0.83 0.909

0.949 0.995 0.841 0.844 0.924 0.772 0.949 0.927 0.887 0.908

0.93 0.994 0.818 0.895 0.891 0.778 0.952 0.912 0.877 0.895

0.001 - Delete Memory

0.6

0.7

0.8

0.9

Figure 4.22: AUROC scores for combinations of learning rate and few-shot learning method on MNIST for a
previously conditionally trained C-MemAE. Each plot shows results for one setting for every combination of the
previously learned and newly learned classes.

4.2 Discussion 35

ing training samples did best.

The AUROC scores for each learning rate and method, such as for every combination of
previously learned classes and newly learned classes is found in Figure A.3. The classes on
which performance is worst are once again car, cat, dog, horse, and truck. We again did not
observe better than average performance where the previous classes overlap with the newly
learned class.

On the car class, the performance of normal learning was outperformed consistently by
FSL with a high learning rate. For the low learning rate, copying the training samples per-
formed considerably better than the other methods on the car class. For the truck class, all
methods consistently outperformed regular learning with very few exceptions.

The method where training samples were copied to memory almost always reached an
AUROC score higher than 0.5 for all classes and both learning rates, even for classes which
were difficult to learn in regular training.

4.2 Discussion

Based on the earlier results, we draw conclusions for the effectiveness of MemAE in normal
training, conditional, and few-shot learning.

4.2.1 Comparison of AE and MemAE

In our testing, MemAE did seem to perform better than AE overall. However, we were not
able to achieve the same results as Gong et al. Especially for non-flat MemAE, our results
were significantly lower and AE outperformed it. We assume that this is due to other vari-
ables in the setup, including number of epochs, data preprocessing, training sample size,
exact model setup, etc.

For MNIST, we were also able to observe a similar effect to that reported by [Fin+21].
Namely, that anomaly detecting with autoencoders has a bias for the complexity of data. For
the MNIST data set, digits which have an inherently simple structure such as "0" or "1" per-
formed best for anomaly detection. While more complex digits such as "2" and "8" performed
worse. This is because autoencoders trained on complex data will generalize well to simple
data, which is bad for anomaly detection.

For the CIFAR-10 data set, we also achieved results close to Gong et al. However, due to
scores of less than 0.5 on some samples, the effectiveness of (Mem)AE must be questioned
for this data set, unless the en- and decoder structure can be improved to achieve satisfactory
results. If the score is lower than this value, it would be better to randomly "guess" if a sample
is normal or anomalous with the proportion of normal to anomalous data, if it was known.
For CIFAR-10, why some classes performed much better than others is not entirely clear, as
the complexity of images is difficult to assess in this case.

We saw that overall, MemAE had a higher reconstruction error than AE. This makes sense,
as the memory inhibits the direct usage of the encoding. This error, however seems to in-
crease for anomalies and normal data roughly equally. In turn, the anomaly detection by
MemAE was not always better than that of AE. An over-proportional increase in error for

4.2 Discussion 36

anomalies would have been needed.

The training for MemAE was also much more unstable, especially for CIFAR-10. This
can be explained by memory entries suddenly changing their content and therefore affecting
reconstruction. This instability, however, makes MemAE much more unreliable.

4.2.2 Hyperparameter analysis on MemAE

A clear takeaway is that the hyperparameters can severely influence the performance of
MemAE. While MemAE’s AUROC scores were better on average than for normal AE, it does
not seem to fully solve the aspect of tuning hyperparameters.

When analyzing results for different memory sizes, we saw that a too small memory had
negative effects on the performance. This does not mean, however, that a large memory will
always yield good results. First, it must be taken into account that the shrink threshold must
also be adjusted accordingly. For both data sets, increasing the memory size to the point
where the shrink threshold was near the value 1/N , resulted in a decrease in performance.
The significance of this ratio is shown by the memory access. After taking the softmax over
the cosine similarity values, the similarity scores will likely be around 1/N . This is why the
AUROC scores were largely unchanged where the shrink threshold was significantly lower, as
all similarity scores were still above this threshold after normalizing via softmax.

For the shrink threshold of 0.1 with a memory size of 10 on MNIST, the memory entries al-
most exclusively contained clear images of the digits which the model was trained on. In this
regard, inducing sparsity has indeed had a positive effect. Comparing these images to those
shown for different memory sizes, we saw that a low memory size has also given clearer re-
sults when decoding memory entries than for large memories, up until a memory size where
the shrink threshold had an effect again, as was seen for the digit 9 of MNIST in Figure 4.8.
We can conclude from this that a low memory size and an adequate shrink threshold both
increase the "clarity" in structure of memory items, as fewer are used for reconstruction.

However, while the memory learned clearer structures, this has not always been positive
for the overall anomaly recognition. Mostly, a higher memory size and lower shrink thresh-
old has yielded better AUROC scores. This suggests that while the reconstruction error of
anomalies is increased, so is that of normal samples. As was also seen in the comparison of
AE to MemAE.

The clearer structure is in line with the overall memory change. We saw that when the
shrink threshold was around 1/N , the memory change was highest, because the memory
induces a much higher reconstruction loss when only few memory items are used.

For very small memory sizes, the change also increased. This makes sense because each
memory entry is more relevant and the construction error overall is also higher.

The fact that memory change was strongest in the beginning is simply contributed to the
fact that the most learning overall takes place in the first epochs, as the error is the highest
there. The only exception to this rule was for the highest shrink threshold on CIFAR-10,
where the memory changed more later on during training. It is unclear exactly why this
happens and must be explored further.

From these results we conclude that the shrink threshold and memory, together with
sparseness of memory access are in fact successful in limiting reconstruction of anomalies.

4.2 Discussion 37

However, this at the same time reduces the generalization for normal data as well. As the AU-
ROC scores were worse for a threshold of 1/N than for lower thresholds, we cannot confirm
the optimal range for this value of [1/N , 3/N], as proposed by Gong et al. We can, however,
confirm the significance of this ratio for MemAE. Especially around 1/N , the memory’s effect
increases.

However, as there are no clear starting points on how to choose the memory size, and
since the shrink threshold can have very negative effects if not tuned correctly, these are two
more hyperparameters which must be adjusted for successful anomaly detection, increasing
the complexity of using MemAE over AE for anomaly detection.

4.2.3 Comparison of CAE and C-MemAE

From comparing our approaches for conditional training to AE and MemAE, we have seen
two things. First, C-MemAE strongly outperformed Conditional AE (CAE). Second, C-MemAE
performed similarly to MemAE when comparing the same classes.

Considering the first result, we learn that C-MemAE can "save" enough relevant informa-
tion in its memory, such that a switch between different memory modules has a significant
enough effect on the output. This has been confirmed by reconstructing various images for
a C-MemAE trained on 0 and 1 in Figure 4.18. C-MemAE always reconstructed the class
which the condition was set to. For CAE this was not the case. The reconstructions seemed
to either represent 0 or 1 depending on what the input looked most similar to. For example,
the digit 4 was reconstructed to an image resembling a 1, while the 3 was reconstructed to
a 0. For CAE overall, the condition had little effect. For the digits 0 and 1 this effect was
especially prominent. Both classes were nearly perfectly reconstructed by CAE, even when
the condition was "misaligned". MemAE’s output was "overridden" by the condition. It was
able to reconstruct a 1 out of a 0 by setting the condition to 1, and vice versa.

As the en- and decoders were equal in all cases, the mechanism of adding additional
layers within latent space was not powerful enough to make CAE viable. By increasing the
number of layers it might be possible to achieve better results. Another approach would be to
use Conditional Variational Autoencoder (CVAE) as an alternative, to get a better benchmark
for C-MemAE. One strong point of C-MemAE is, however, that new conditions can be easily
added by adding another memory module.

Regarding the second main result, C-MemAE seems to generalize similarly well to MemAE
and the different memory modules do not impact this in a major negative was. We must note,
however, that C-MemAE was trained on multiple classes, and can therefore discern these very
well. Therefore, when comparing results to those of regular MemAE, it must be considered
that when one of the classes from the condition is considered anomalous, the C-MemAE
will be able to detect this class as an anomaly especially well. For example, the C-MemAE
conditionally trained on 0 and 1 will be able to detect 1 as an anomaly easily when 0 is
considered normal, and vice versa. Therefore, it has a small advantage in this regard, when
samples from other conditions are used in the test set.

Additionally, C-MemAE also saw more images in total than MemAE as it was trained on
multiple classes. To account for this, it could be tested how the performance compares when
C-MemAE sees as many samples in total as MemAE does. However, in a realistic setting there
would be no reason to not use all samples for training, our comparison is justified in this
regard.

By design, C-MemAE therefore has a larger sample size for training, when compared to

4.2 Discussion 38

methods where models are individually trained for all conditions. This should also allow C-
MemAE to generalize more which is beneficial to MemAE as this could increase the accuracy
of reconstruction for normal samples, while still limiting reconstruction of anomalies due to
the memory.

Lastly, we have seen that the specific combination of classes can have an impact on per-
formance. This effect was especially clear from the AUROC scores for CIFAR-10 training
in Figure 4.19. For C-MemAE, training conditionally on classes car and deer yielded bad
testing performance for the car class, while training conditionally on car and truck yielded
considerably better results.

In general, it is not entirely clear why certain combinations yielded the better results than
others, an exhaustive test of combinations would be necessary to get clearer insight.

C-MemAE thus yields a method which is easily extendable to new conditions and can
make use of training samples for multiple classes, increasing generalization. However, more
methods should be used as comparison, also to have a benchmark for hyperparameter tuning,
when applying to new data sets.

4.2.4 Few-shot learning

For few-shot learning we have seen promising results of MemAE, outperforming AE with cer-
tain memory initialization methods. However, this was only consistently the case when the
learning rate was set higher than for normal training. This higher learning rate increased
greatly increased the AUROC scores for all methods. We mainly contribute the positive im-
pact of the high learning rate to two factors.

First, in some cases training has not yet converged after 50 epochs. The complete training
time might well exceed that of normal training, as less samples are available and thus less
stochastic gradient descent steps are taken per epoch.

Secondly, early in training we have observed spikes in the AUROC score before it gradu-
ally drops to a lower level. As training could be stopped at these points, few-shot learning
was able to outperform regular training in certain cases, because we used the maximum
over all epochs as score. We assume that these early spikes occur because the model starts
from a point at which it already has learned to reconstruct some structures. We assume that
deleting the memory and copying training samples worked best, as the en-/decoder is opti-
mized for one type of data, while the memory is either random, or contains the structure of
different samples. Because by continuing learning with a different class, the model moves
through and "explores" parameter space much more, where it generalizes well, before ulti-
mately overfitting. This effect was almost exclusively seen for the increased learning rate,
this can be explained by the fact that the randomness from stochastic steps and a relatively
high learning rate actually helps with generalization as steps are not purely taken into the
"correct" direction do decrease reconstruction error, on the limited sample size, but might
"overshoot" such that "shallow" local minima are skipped and different parts of parameter
space are reached.

The diagonal entries for transfer learning methods, i.e., where the previous and newly
learned class overlap are also of interest. For one, we saw that the scores are higher on av-
erage. This makes sense, as we simply continue training for an additional 50 epochs, albeit
with fewer samples. For some classes, however, values have decreased from levels reached in
normal training for both learning rates. This can be seen for class 2 with both learning rates,

4.2 Discussion 39

e.g., in Figure 4.20, where the AUROC scores are lower than after regular training. Due to
the lower number of samples, this is expected as the model specifically tries to reconstruct
these samples as accurately as possible, overfitting the model and hurting generalization.

Conditional few-shot learning

Applying few-shot learning to C-MemAE has yielded similar results overall, suggesting that
a higher learning rate helped utilize the generalized structure of the model. Additionally,
scores of few-shot learning on MemAE were beaten for some classes. We assume that this
is also in part because of a better generalization achieved by C-MemAE, after a few epochs
of few-shot learning. The effects of generalization from regular few-shot learning were thus
increased further by previous conditional training on multiple classes.

However, while C-MemAE outperformed MemAE in few-shot learning for some classes,
this did not always hold. In some cases, performance of C-MemAE dropped compared to
MemAE. Why this is the case is not entirely clear. Because the previously learned classes can
have a significant effect on how well few-shot learning performs, a more thorough explo-
ration of combinations is needed to explain this phenomenon.

Conditionally training all combinations, before continuing with few-shot learning would
also allow to more accurately compare averages over all combinations of the previous class(es)
and new class between C-MemAE and MemAE. Right now comparison would be skewed as
some classes appear multiple times for C-MemAE, such as class 1 for MNIST, for example.

In general, we have seen that when deleting the memory of (C-)MemAE or copying train-
ing samples to its memory, it has achieved strong performance in few-shot learning settings,
consistently outperforming regular AE when used for transfer learning. Additionally, syn-
ergy effects have been observed for C-MemAE, outperforming MemAE for few-shot learning
in some settings. This suggests that C-MemAE can perform well in settings where previous
conditions are known and new conditions must quickly be learned. A next step would be
to adapt our proposed methods to extend the C-MemAE by another memory module when
being trained on a new condition. However, more thorough testing is needed for C-MemAE
and few-shot learning in general for MemAE, to determine in which settings performance
will be satisfactory.

Chapter 5

Conclusion

5.1 Summary

We this work we first analyzed MemAE and compared it to AE. By adapting the structure of
the en- and decoder introduced by Gong et al. with another layer, which flattened the en-
coded images, we were able to increase the AUROC score for both data sets with regular AE
and MemAE in our testing. We saw that with the adapted method, MemAE performed better
than AE, although our results indicates that this difference was relatively small, on average.

We then introduced multiple ways to analyze MemAE and applied these by testing MemAE
with different hyperparameter values for memory size and shrink threshold. When the
shrink threshold was around 1/N , and when the memory was very small, the memory en-
tries changed the most and we observed that the memorized samples resembled the overall
learned features very well. These hyperparameter values did not yield the highest AUROC
scores, however. With an increase in "clarity" of the memory items, the reconstruction error
increased for normal and anomalous samples alike, but the proportionality of this change did
not seem beneficial in our testing.

An approach was introduced to use MemAE for conditional training in the form of C-
MemAE. We achieved this by using multiple memory modules, one for each condition, while
sharing the en- and decoder between all conditions. By keeping the approach flexible, we al-
low for an application where the condition may be unknown and make no assumption about
the en- and decoder structure. When comparing the AUROC scores for single classes, testing
has shown that C-MemAE performs similar to MemAE, performing better in some cases, and
worse in others.

Then we introduced multiple different approaches to use MemAE and C-MemAE for few-
shot learning. Methods that make use of the memory by either deleting it or filling it with
the encodings of training samples have outperformed AE with few exceptions, in some cases
also outperforming regular training on full data sets. Few-shot learning with C-MemAE has
yielded mixed results compared to MemAE but outperformed it on certain difficult classes.

Overall, results suggest that MemAE needs sufficient hyperparameter tuning to perform
better than AE and thus should not be blindly preferred over AE in every setting. For con-
ditional and few-shot learning, MemAE methods have yielded good results, but still need to
be correctly adjusted via hyperparameters, and via initialization methods for the memory in
FSL.

5.2 Future work 41

5.2 Future work

While MemAE methods have yielded good results in our testing, many aspects still need to be
explored to gain a full understanding when it is particularly applicable. Different en-/decoder
structures have resulted in either AE or MemAE performing better. Before applying MemAE
to a new setting, it should be fully explored how different structures may affect performance.
As we have only analyzed image data, time series, video, or singular data samples without a
contextual component would also be of interest.

When contextual dimensions are present, such as for images, instead of collapsing these
to singleton dimensions as we did, it may also be beneficial to keep these but to have a
memory specifically for each part of the image. Instead of sharing all memory entries for
each part of the image, each part of the image in latent space would have its own memory
entries. This contextual MemAE has shown very good results in early testing of ours, even
outperforming the flat variants of MemAE.

Additionally, a complete hyperparameter search would be needed for these different struc-
tures, shrink threshold, memory size, and combinations of classes for conditional and few-
shot learning.

We have seen during addressing of memory items, that certain entries have a negative
cosine similarity score. After applying softmax, however, unless the value falls below the
shrink threshold, these memory items are still used for reconstruction. It could be explored
how a modification of this method, and memory addressing in general, changes MemAE.
One approach would be to cut off negative entries in the addressing vector immediately after
calculating the cosine similarity.

Furthermore, exploration of latent space for AE and MemAE is needed to further under-
stand how the memory can optimally assist or limit reconstruction. As we saw, clear latent
space representations of samples in memory did not always yield the best results. One possi-
ble fix could be to use an anomaly detection system which operates in latent space. For ex-
ample, by comparing the encoded samples to the most similar memory entries. Early testing
of ours yielded worse results than regular (Mem)AE, suggesting that exploring multiple clus-
tering methods for latent space with a wide variety of hyperparameters is necessary. These
clustering methods may also be used for C-MemAE as a selection metric when the condition
is not known. For a starting point on different methods exploring latent space in anomaly
detection, we refer the reader to [Aba+18; PNH20]. A different approach to improve the
performance of MemAE may be to utilize different error metrics. For images, e.g., one which
is less sensitive to individual pixel differences, but more to overall structural changes. One
such method has yielded promising results for regular AE, as shown in [Fin+21].

For few-shot learning, there are additional initialization methods which should be ex-
plored. When copying samples, the memory has exactly taken the size corresponding to the
number of samples provided. It would be possible to also only fill memory entries for which
a sample is available and keep additional memory entries or reset them. These initialization
methods can also be applied to regular training. Another approach is to freeze the en- and
decoder during learning, and only optimizing the memory during training. This would also
allow to add new conditions for C-MemAE, without affecting performance of other learned
conditions.

Lastly, it could be explored what happens when a memory is added to a normal AE if
training has already progressed and the en-/decoders can already extract significant features.

Appendix A

Appendix 1

43

0 20 40 60 80 100

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

A
U

R
O

C
S

co
re

Shrink Threshold

0.0001

0.0005

0.002

0.008

0.01

(a) Learning curve for the plane class.

0 20 40 60 80 100

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

A
U

R
O

C
S

co
re

Shrink Threshold

0.0001

0.0005

0.002

0.008

0.01

(b) Learning curve for the truck class.

Figure A.1: AUROC score curves of MemAE flat on two different classes of CIFAR-10 for multiple different shrink
thresholds.

44

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

P
re

v
io

u
s

C
la

ss

0.683 0.33 0.637 0.478 0.752 0.475 0.631 0.409 0.67 0.383

0.582 0.376 0.625 0.496 0.768 0.495 0.642 0.433 0.658 0.357

0.586 0.291 0.672 0.523 0.78 0.531 0.673 0.437 0.6 0.309

0.535 0.281 0.659 0.559 0.77 0.563 0.659 0.446 0.566 0.308

0.545 0.286 0.649 0.526 0.787 0.538 0.66 0.463 0.55 0.309

0.55 0.264 0.653 0.544 0.763 0.572 0.652 0.456 0.595 0.323

0.511 0.286 0.652 0.544 0.772 0.543 0.676 0.436 0.552 0.308

0.555 0.287 0.649 0.538 0.774 0.544 0.64 0.513 0.584 0.31

0.637 0.341 0.633 0.492 0.766 0.497 0.677 0.407 0.712 0.402

0.599 0.344 0.638 0.506 0.771 0.527 0.664 0.438 0.667 0.391

0.0001 - AE flat - Transfer Learning

0.3

0.4

0.5

0.6

0.7

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

P
re

v
io

u
s

C
la

ss

0.72 0.526 0.648 0.495 0.74 0.54 0.677 0.537 0.679 0.609

0.76 0.522 0.65 0.516 0.765 0.565 0.733 0.518 0.754 0.666

0.676 0.474 0.653 0.517 0.769 0.585 0.732 0.547 0.629 0.557

0.619 0.515 0.647 0.564 0.765 0.669 0.735 0.544 0.642 0.5

0.528 0.463 0.654 0.576 0.774 0.685 0.763 0.566 0.617 0.433

0.587 0.546 0.657 0.525 0.772 0.564 0.736 0.563 0.628 0.598

0.559 0.535 0.658 0.587 0.773 0.655 0.764 0.564 0.613 0.476

0.629 0.53 0.651 0.543 0.766 0.582 0.739 0.513 0.656 0.674

0.747 0.497 0.648 0.506 0.752 0.518 0.703 0.537 0.691 0.632

0.733 0.503 0.651 0.502 0.759 0.578 0.73 0.532 0.701 0.662

0.0001 - MemAE flat - Copy Samples

0.3

0.4

0.5

0.6

0.7

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

P
re

v
io

u
s

C
la

ss

0.762 0.408 0.64 0.49 0.73 0.518 0.661 0.483 0.721 0.56

0.703 0.461 0.649 0.517 0.762 0.538 0.728 0.509 0.685 0.575

0.562 0.437 0.653 0.524 0.759 0.557 0.713 0.53 0.646 0.493

0.574 0.427 0.65 0.524 0.764 0.547 0.734 0.517 0.598 0.534

0.534 0.44 0.659 0.534 0.773 0.545 0.734 0.525 0.612 0.491

0.529 0.424 0.65 0.549 0.765 0.61 0.731 0.505 0.598 0.475

0.556 0.465 0.657 0.528 0.771 0.562 0.738 0.513 0.572 0.498

0.61 0.429 0.656 0.513 0.758 0.551 0.721 0.524 0.648 0.56

0.74 0.43 0.646 0.501 0.743 0.53 0.677 0.492 0.728 0.58

0.664 0.497 0.646 0.506 0.754 0.526 0.71 0.507 0.702 0.605

0.0001 - MemAE flat - Delete Memory

0.3

0.4

0.5

0.6

0.7

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

P
re

v
io

u
s

C
la

ss

0.728 0.351 0.642 0.491 0.752 0.472 0.629 0.42 0.693 0.352

0.621 0.422 0.619 0.523 0.765 0.48 0.669 0.426 0.66 0.486

0.592 0.289 0.68 0.512 0.77 0.507 0.671 0.444 0.629 0.349

0.565 0.327 0.65 0.558 0.77 0.532 0.666 0.468 0.607 0.366

0.592 0.322 0.656 0.503 0.791 0.506 0.667 0.468 0.625 0.338

0.569 0.312 0.666 0.535 0.772 0.551 0.665 0.483 0.609 0.399

0.556 0.329 0.651 0.532 0.77 0.511 0.74 0.453 0.599 0.405

0.59 0.324 0.657 0.542 0.776 0.529 0.675 0.534 0.608 0.366

0.646 0.365 0.628 0.489 0.752 0.484 0.642 0.422 0.742 0.411

0.628 0.399 0.627 0.521 0.765 0.53 0.662 0.442 0.697 0.44

0.0001 - MemAE flat - Transfer Learning

0.3

0.4

0.5

0.6

0.7

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

P
re

v
io

u
s

C
la

ss

0.645 0.435 0.658 0.53 0.774 0.54 0.727 0.496 0.686 0.41

0.6 0.449 0.661 0.54 0.772 0.558 0.735 0.515 0.686 0.412

0.594 0.43 0.656 0.549 0.772 0.566 0.745 0.516 0.66 0.414

0.608 0.458 0.661 0.575 0.777 0.593 0.746 0.514 0.676 0.41

0.588 0.422 0.659 0.553 0.774 0.533 0.743 0.513 0.664 0.42

0.593 0.443 0.655 0.555 0.775 0.577 0.74 0.517 0.676 0.424

0.58 0.422 0.655 0.544 0.773 0.549 0.742 0.518 0.673 0.402

0.6 0.445 0.663 0.558 0.775 0.601 0.741 0.536 0.672 0.417

0.605 0.433 0.658 0.534 0.778 0.547 0.739 0.497 0.672 0.414

0.599 0.436 0.657 0.564 0.772 0.585 0.739 0.521 0.678 0.445

0.001 - AE flat - Transfer Learning

0.3

0.4

0.5

0.6

0.7

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

P
re

v
io

u
s

C
la

ss

0.649 0.547 0.668 0.534 0.768 0.581 0.744 0.518 0.719 0.695

0.681 0.54 0.667 0.559 0.766 0.589 0.749 0.54 0.722 0.701

0.652 0.513 0.658 0.564 0.767 0.658 0.764 0.582 0.688 0.66

0.651 0.555 0.657 0.588 0.774 0.631 0.752 0.553 0.662 0.701

0.603 0.572 0.67 0.602 0.773 0.663 0.77 0.566 0.672 0.687

0.634 0.545 0.667 0.591 0.771 0.593 0.753 0.579 0.689 0.725

0.652 0.54 0.672 0.585 0.772 0.677 0.751 0.547 0.665 0.67

0.661 0.56 0.667 0.568 0.778 0.62 0.754 0.523 0.728 0.748

0.65 0.523 0.668 0.549 0.779 0.552 0.742 0.553 0.702 0.694

0.646 0.515 0.671 0.599 0.773 0.622 0.747 0.549 0.709 0.687

0.001 - MemAE flat - Copy Samples

0.3

0.4

0.5

0.6

0.7

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

P
re

v
io

u
s

C
la

ss

0.748 0.452 0.639 0.505 0.758 0.54 0.732 0.524 0.743 0.655

0.716 0.478 0.642 0.524 0.758 0.555 0.728 0.539 0.732 0.676

0.633 0.481 0.653 0.544 0.757 0.597 0.732 0.553 0.738 0.63

0.632 0.466 0.646 0.537 0.759 0.62 0.734 0.571 0.719 0.666

0.6 0.512 0.654 0.589 0.758 0.569 0.759 0.566 0.722 0.644

0.61 0.485 0.649 0.597 0.76 0.636 0.737 0.543 0.722 0.689

0.622 0.502 0.656 0.576 0.765 0.606 0.753 0.545 0.691 0.598

0.675 0.479 0.643 0.532 0.76 0.613 0.743 0.55 0.727 0.672

0.741 0.485 0.655 0.536 0.76 0.554 0.735 0.516 0.731 0.666

0.689 0.477 0.646 0.528 0.751 0.564 0.73 0.575 0.738 0.652

0.001 - MemAE flat - Delete Memory

0.3

0.4

0.5

0.6

0.7

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

P
re

v
io

u
s

C
la

ss

0.704 0.427 0.646 0.551 0.746 0.547 0.733 0.494 0.643 0.571

0.708 0.459 0.656 0.563 0.76 0.566 0.751 0.563 0.726 0.638

0.679 0.468 0.659 0.548 0.757 0.596 0.755 0.533 0.649 0.47

0.626 0.478 0.66 0.557 0.76 0.565 0.748 0.553 0.662 0.512

0.618 0.522 0.665 0.562 0.777 0.573 0.758 0.579 0.675 0.469

0.629 0.474 0.66 0.589 0.779 0.566 0.73 0.562 0.661 0.552

0.711 0.442 0.666 0.579 0.776 0.54 0.755 0.545 0.649 0.462

0.629 0.447 0.659 0.562 0.765 0.576 0.738 0.546 0.681 0.59

0.719 0.483 0.648 0.526 0.763 0.528 0.729 0.514 0.673 0.541

0.691 0.478 0.661 0.584 0.758 0.609 0.733 0.514 0.718 0.583

0.001 - MemAE flat - Transfer Learning

0.3

0.4

0.5

0.6

0.7

Figure A.2: AUROC scores for combinations of learning rate, model type, and few-shot learning method on
CIFAR-10. Each plot shows results for one setting for every combination of the previously learned and newly
learned class.

45

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Car,
Deer

Car,
Truck

Cat,
Dog

Deer,
Ship

Frog,
Horse

Plane,
Bird

P
re

v
io

u
s

C
la

ss
es

0.601 0.42 0.658 0.508 0.76 0.565 0.736 0.508 0.594 0.495

0.567 0.437 0.654 0.5 0.756 0.565 0.708 0.512 0.723 0.604

0.554 0.454 0.653 0.515 0.76 0.55 0.72 0.522 0.594 0.485

0.583 0.407 0.657 0.498 0.762 0.552 0.7 0.494 0.73 0.577

0.547 0.415 0.653 0.502 0.766 0.562 0.739 0.505 0.588 0.569

0.642 0.405 0.66 0.505 0.751 0.52 0.695 0.499 0.689 0.57

0.0001 - Copy Best Fitting from Conditional Memory

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Car,
Deer

Car,
Truck

Cat,
Dog

Deer,
Ship

Frog,
Horse

Plane,
Bird

P
re

v
io

u
s

C
la

ss
es

0.572 0.52 0.654 0.528 0.763 0.572 0.733 0.55 0.633 0.551

0.697 0.56 0.65 0.503 0.758 0.514 0.722 0.516 0.759 0.707

0.565 0.483 0.649 0.506 0.765 0.527 0.737 0.522 0.66 0.661

0.63 0.482 0.65 0.51 0.757 0.57 0.723 0.537 0.689 0.555

0.514 0.502 0.655 0.541 0.77 0.581 0.736 0.525 0.59 0.443

0.713 0.445 0.65 0.497 0.756 0.518 0.711 0.499 0.696 0.508

0.0001 - Delete Memory, Copy Samples

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Car,
Deer

Car,
Truck

Cat,
Dog

Deer,
Ship

Frog,
Horse

Plane,
Bird

P
re

v
io

u
s

C
la

ss
es

0.58 0.425 0.649 0.518 0.759 0.573 0.724 0.544 0.635 0.541

0.636 0.446 0.651 0.513 0.749 0.532 0.714 0.504 0.731 0.602

0.598 0.425 0.646 0.501 0.758 0.579 0.72 0.503 0.662 0.537

0.666 0.434 0.65 0.52 0.758 0.556 0.707 0.504 0.736 0.558

0.507 0.448 0.647 0.513 0.761 0.551 0.723 0.517 0.628 0.524

0.662 0.396 0.643 0.501 0.747 0.541 0.691 0.501 0.709 0.534

0.0001 - Delete Memory

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Car,
Deer

Car,
Truck

Cat,
Dog

Deer,
Ship

Frog,
Horse

Plane,
Bird

P
re

v
io

u
s

C
la

ss
es

0.638 0.448 0.667 0.569 0.773 0.586 0.754 0.574 0.661 0.543

0.621 0.483 0.672 0.527 0.771 0.556 0.744 0.557 0.675 0.623

0.639 0.453 0.672 0.558 0.774 0.56 0.739 0.521 0.643 0.53

0.673 0.469 0.672 0.555 0.774 0.555 0.743 0.529 0.678 0.661

0.673 0.473 0.667 0.532 0.767 0.637 0.756 0.547 0.652 0.618

0.618 0.439 0.672 0.544 0.769 0.549 0.749 0.546 0.649 0.584

0.001 - Copy Best Fitting from Conditional Memory

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Car,
Deer

Car,
Truck

Cat,
Dog

Deer,
Ship

Frog,
Horse

Plane,
Bird

P
re

v
io

u
s

C
la

ss
es

0.683 0.459 0.672 0.635 0.771 0.618 0.742 0.565 0.684 0.657

0.714 0.533 0.671 0.581 0.77 0.619 0.742 0.529 0.706 0.684

0.618 0.567 0.668 0.568 0.772 0.597 0.748 0.531 0.688 0.697

0.679 0.533 0.671 0.553 0.771 0.595 0.74 0.573 0.723 0.659

0.654 0.536 0.664 0.564 0.774 0.586 0.742 0.542 0.652 0.659

0.649 0.516 0.666 0.522 0.772 0.571 0.752 0.544 0.693 0.658

0.001 - Delete Memory, Copy Samples

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Class

Car,
Deer

Car,
Truck

Cat,
Dog

Deer,
Ship

Frog,
Horse

Plane,
Bird

P
re

v
io

u
s

C
la

ss
es

0.642 0.459 0.647 0.546 0.75 0.572 0.733 0.567 0.726 0.633

0.719 0.473 0.639 0.506 0.758 0.545 0.734 0.531 0.738 0.685

0.714 0.466 0.651 0.521 0.756 0.566 0.727 0.547 0.737 0.66

0.698 0.497 0.652 0.578 0.754 0.563 0.729 0.579 0.767 0.653

0.634 0.49 0.655 0.549 0.757 0.618 0.737 0.566 0.75 0.652

0.698 0.463 0.652 0.519 0.757 0.581 0.729 0.536 0.738 0.632

0.001 - Delete Memory

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Figure A.3: AUROC scores for combinations of learning rate and few-shot learning method on CIFAR-10 for a
previously conditionally trained C-MemAE. Each plot shows results for one setting for every combination of the
previously learned and newly learned classes.

Bibliography

[Aba+18] Abati, D., Porrello, A., Calderara, S., and Cucchiara, R. Latent Space Autoregres-
sion for Novelty Detection. 2018. URL: http://arxiv.org/pdf/1807.01653v2.

[Bal12] Baldi, P. “Autoencoders, Unsupervised Learning, and Deep Architectures”. In:
Proceedings of ICML Workshop on Unsupervised and Transfer Learning. Ed. by
Guyon, I., Dror, G., Lemaire, V., Taylor, G., and Silver, D. Vol. 27. Proceedings of
Machine Learning Research. Bellevue, Washington, USA: PMLR, 2012, pp. 37–
49. URL: http://proceedings.mlr.press/v27/baldi12a.html.

[BH89] Baldi, P. and Hornik, K. “Neural networks and principal component analysis:
Learning from examples without local minima”. In: Neural Networks 2.1 (1989),
pp. 53–58. ISSN: 08936080.

[CC19] Chalapathy, R. and Chawla, S. Deep Learning for Anomaly Detection: A Survey.
2019. URL: http://arxiv.org/pdf/1901.03407v2.

[CBK09] Chandola, V., Banerjee, A., and Kumar, V. “Anomaly detection - A Survey”. In:
ACM Computing Surveys 41.3 (2009), pp. 1–58. ISSN: 0360-0300. DOI: 10.1145/
1541880.1541882.

[Fal19] Falcon, WA, et al. PyTorch Lightning. 2019. URL: https://github.com/PyTorchLightning/
pytorch-lightning (visited on 08/09/2021).

[Fin+21] Finke, T., Krämer, M., Morandini, A., Mück, A., and Oleksiyuk, I. Autoencoders
for unsupervised anomaly detection in high energy physics. 2021. URL: http://
arxiv.org/pdf/2104.09051v1.

[Gon+19] Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., Venkatesh, S., and van Hen-
gel, A. den. “Memorizing Normality to Detect Anomaly: Memory-Augmented
Deep Autoencoder for Unsupervised Anomaly Detection”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 2019.

[GWD14] Graves, A., Wayne, G., and Danihelka, I. Neural Turing Machines. 2014. URL:
http://arxiv.org/pdf/1410.5401v2.

[He+15] He, K., Zhang, X., Ren, S., and Sun, J. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. 2015. URL: http://arxiv.
org/pdf/1502.01852v1.

[HS97] Hochreiter, S. and Schmidhuber, J. “Long short-term memory”. In: Neural compu-
tation 9.8 (1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.
9.8.1735.

[Kai+17] Kaiser, Ł., Nachum, O., Roy, A., and Bengio, S. Learning to Remember Rare Events.
2017. URL: http://arxiv.org/pdf/1703.03129v1.

[KH+09] Krizhevsky, A., Hinton, G., et al. “Learning multiple layers of features from tiny
images”. In: (2009).

http://arxiv.org/pdf/1807.01653v2
http://proceedings.mlr.press/v27/baldi12a.html
http://arxiv.org/pdf/1901.03407v2
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
http://arxiv.org/pdf/2104.09051v1
http://arxiv.org/pdf/2104.09051v1
http://arxiv.org/pdf/1410.5401v2
http://arxiv.org/pdf/1502.01852v1
http://arxiv.org/pdf/1502.01852v1
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/pdf/1703.03129v1

Bibliography 47

[LBH15] LeCun, Y., Bengio, Y., and Hinton, G. “Deep learning”. In: Nature 521.7553
(2015), pp. 436–444. ISSN: 0028-0836. DOI: 10.1038/nature14539.

[Mac18] Macfarlane, P. W. “The Influence of Age and Sex on the Electrocardiogram”. In:
Advances in experimental medicine and biology 1065 (2018), pp. 93–106. ISSN:
0065-2598. DOI: 10.1007/978-3-319-77932-4_6.

[PNH20] Park, H., Noh, J., and Ham, B. Learning Memory-guided Normality for Anomaly
Detection. 2020. URL: http://arxiv.org/pdf/2003.13228v1.

[Pas+19] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chin-
tala, S. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
2019. URL: http://arxiv.org/pdf/1912.01703v1.

[Rus16] Rusk, N. “Deep learning”. In: Nature Methods 13.1 (2016), p. 35. ISSN: 1548-
7091. DOI: 10.1038/nmeth.3707.

[San+16] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. One-shot
Learning with Memory-Augmented Neural Networks. 2016. URL: http://arxiv.org/
pdf/1605.06065v1.

[van+17] van der Ende, M. Y., Siland, J. E., Snieder, H., van der Harst, P., and Rienstra,
M. “Population-based values and abnormalities of the electrocardiogram in the
general Dutch population: The LifeLines Cohort Study”. In: Clinical cardiology
40.10 (2017), pp. 865–872. DOI: 10.1002/clc.22737.

[WCB14] Weston, J., Chopra, S., and Bordes, A. Memory Networks. 2014. URL: http://
arxiv.org/pdf/1410.3916v11.

[Yad19] Yadan, O. Hydra - A framework for elegantly configuring complex applications.
2019. URL: https://github.com/facebookresearch/hydra (visited on 08/09/2021).

[Yan98] Yann LeCun. The MNIST database of handwritten digits of handwritten digits.
1998. URL: http://yann.lecun.com/exdb/mnist/ (visited on 08/09/2021).

https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-77932-4_6
http://arxiv.org/pdf/2003.13228v1
http://arxiv.org/pdf/1912.01703v1
https://doi.org/10.1038/nmeth.3707
http://arxiv.org/pdf/1605.06065v1
http://arxiv.org/pdf/1605.06065v1
https://doi.org/10.1002/clc.22737
http://arxiv.org/pdf/1410.3916v11
http://arxiv.org/pdf/1410.3916v11
https://github.com/facebookresearch/hydra
http://yann.lecun.com/exdb/mnist/

	Introduction
	Motivation
	Anomaly detection
	Autoencoders

	Problem statement
	Objective

	Related work
	Anomaly detection with autoencoders
	Memory-augmented neural networks
	Memory-augmented autoencoder
	Retrieving samples from memory
	Ensuring sparsity of memory addressing

	Learning memory-guided normality for anomaly detection
	Memory-augmented methods for few-shot learning

	Methods and material
	Adaption of MemAE
	Conditional training
	C-MemAE
	CAE

	Few-shot learning
	Transfer learning
	Deleting memory
	Copying training samples into memory

	Combining conditional training and few-shot learning
	Copying memory entries from conditional memory
	Deleting memory
	Copying training samples into memory

	Training and testing
	Evaluating results
	Visualizing singular memory entries
	Memory change over time
	Memory access

	Experiment setup
	Comparison of AE and MemAE
	Hyperparameter analysis
	Comparison of CAE and C-MemAE
	Few-shot learning

	Evaluation
	Results
	Comparison of AE and MemAE
	Hyperparameter analysis on MemAE
	Comparison of CAE and C-MemAE
	Few-shot learning

	Discussion
	Comparison of AE and MemAE
	Hyperparameter analysis on MemAE
	Comparison of CAE and C-MemAE
	Few-shot learning

	Conclusion
	Summary
	Future work

	Appendix 1
	Bibliography

