
Support Vector Machines
Seminar Data Mining

Leon Zamel
Department of Informatics

Technical University of Munich
Email: leon.zamel@tum.de

Abstract— In this paper we will cover the internal workings
and mathematical aspects behind the Support Vector Machine
(SVM). We will see how constructing a hyperplane allows us
to classify data points depending on which side they lie on
and how to construct an optimal hyperplane which generalizes
well by maximizing the margin. To do so, we will introduce
an optimization problem and will solve it by using Lagrange
multipliers to formulate the dual problem. We will then briefly
look at how to expand this simple model to also work with non-
linearly separable data via slack variables and the kernel method.
Lastly, we will be comparing the one-against-the-rest and one-
against-one multi-class methods and will see that one-against-one
is popular for real world usage, since its training time is lower
and both methods yield similar results.

Keywords— Data Mining, SVM, multi-class, slack variables,
kernel method, Lagrange multipliers

I. INTRODUCTION

Machine learning has become a very important topic in
recent years with the rise of Big Data and the Internet of
Things. With more information to analyze than ever before,
it is necessary for machines to take care of some of this
work for us. One interesting task to solve is the classification
of data. Classification means assigning labels to things.
Deciding if a given credit card transaction is likely to be
fraudulent or deciding which digit is present in a given
image are just two examples of the many classification
problems, we may face in the real world which can be
solved with Support Vector Machines (SVMs) [1], [2].
The SVM uses training data for which we already know
the correct class and builds a model from this to make
decisions on its own. By treating the pre-labeled learning
samples as points in space, it will construct a so-called
hyperplane, which acts as a boundary to separate these points.
It can then make predictions on new unseen data, based
on where this new data point lies with respect to the boundary.

Throughout this paper we will see how the SVM works
for classification. Step by step we will build up a visual
understanding of how to optimally categorize data points
and will translate these concepts to mathematical formulas.
Starting with the modeling of our data and the hyperplane,
we will then find out how to find the best hyperplane for
the data. We will formulate this as an optimization problem,
which we will solve using Lagrange multipliers and quadratic
programming. We will then generalize the model to work
with non-linearly separable data via the kernel method and

hyperplanew · x
+ b

= 1

w · x
+ b

= −
1

margin

1
||w|
|

Fig. 1: A hyperplane separating two classes of data. We want to maximize
the distance between the dashed lines so our model generalizes well.

will introduce slack variables to deal with statistical outliers.
Lastly, we look at different ways to use SVMs for multi-class
classification.
Throughout this paper, we will mainly work along two pieces
of literature which are also the basis for most of the formulas
and offer additional information for the interested reader [2],
[3].

II. TWO-CLASS SVMS

As support vector machines lie in the area of supervised
machine learning, we must first have a labeled dataset from
which the SVM can construct a model to use later on for
classification of new data. In its simplest form, an SVM will
only discern between two classes, −1 and +1 will make for
easy notation later. We can formulate this as the following:

(x1, y1), (x2, y2), ..., (xn, yn) ∈ Rp × {−1, 1} (1)

Where xi is a p-dimensional vector representing a data point
with p features and yi being the corresponding class. We now
look to create a classifier which builds a model from this data
to predict the class of new unseen data points. That is, given an
unseen x it should predict a y. In the simplest form of SVMs
we create one hyperplane, i.e., an n − 1 dimensional object
in n dimensional space, to separate these data points. When
we want to predict the class of a new point, we can plot it



in this space and predict which class it belongs to depending
on which side of the plane it lies on. We now define our
hyperplane as the points x satisfying

w · x + b = 0 (2)

that is the dot product of w and x plus a bias b, with w being
the normal vector of the hyperplane. The goal is to find a w
such that the hyperplane correctly separates our data points.
This means that the formula

sgn(w · xi + b) = yi (3)

where sgn() gives us the sign of the number, holds true for all
data points i ∈ 1, 2, ..., n. Because we chose −1 and 1 for the
labels, we get this very concise equation. We’ll shortly see,
that if a hyperplane satisfying these conditions exists, there
exist infinitely many by slightly moving or rotating an existing
plane. It is now our goal to find the ’best’ one.

A. Finding the best hyperplane

To clearly find the best fitting hyperplane, we must first
define what ’best’ means in this context. For one, the hyper-
plane should label all our known data correctly. Also, as we
want to predict the class of unseen data, we would like the
model to generalize well. In intuitive terms this means that
new data points which are closer to the already labeled points
of class 1 than −1 should also be labeled as 1 and vice versa.
We therefore look for a hyperplane which separates the data
points and maximizes the distance to the closest points from
both classes. This distance is also referred to as the margin.
For now, no points will lie in this space, so we will get a
hard-margin SVM. As a two-dimensional example, we look
at Figure 1.

We see that the hyperplane correctly separates the two
classes at the top and at the bottom. The two dashed lines
are parallel to the hyperplane and show the margin, i.e., the
distance of the hyperplane to the closest data points. The goal
now is to maximize this margin which will also maximize
the hyperplane’s distance to the data points. We can think of
the two outer boundaries as being hyperplanes themselves. We
specify them via the equations:

w · x + b = 1 (4)

w · x + b = −1 (5)

The reason why we want to maximize this distance can
be seen in Figure 2. Here we see the optimal hyperplane in
green. The two parallel dashed green lines show the margin
between the hyperplane and the closest points. In contrast to
the optimal hyperplane, we also see a sub optimal hyperplane
in red. The reason why this line is worse, is that it won’t
generalize well. Imagine we want to predict the class of a
new data point, indicated by the purple star. We clearly see
that it is quite close to the blue class and would probably
like it to be classified as such. The optimal line classifies it
correctly, the other one does not.

optimal hyperplane
sub-optimal hyperplane

Fig. 2: A simple instance of separating two groups of data with a straight
line. The optimal hyperplane maximizes the distance to both groups, while
the sub-optimal hyperplane doesn’t. A new data point (indicated by the purple
star) will be classified differently based on which hyperplane is chosen.

To maximize the margin, we first need to calculate the
distance between the two outer hyperplanes. For this, we can
simply choose points x+,x− from each plane respectively
and project the difference onto the unit normal vector of the
hyperplane to get the margin m:

m =
w

‖w‖
· (x+ − x−)

=
w · x+ −w · x−

‖w‖

=
(1− b)− (−1− b)

‖w‖
(subst. 4 and 5)

=
2

‖w‖

(6)

We may now use this simpler equation to maximize the
margin.

B. Maximizing the margin

First, we see that maximizing the margin is purely done
by minimizing ‖w‖ with respect to the condition that 3 still
holds. We can rewrite this condition to

yi(w · xi + b)− 1 ≥ 0 for i = 1, ..., n (7)

resulting in the optimization formula

min
w,b

1

2
‖w‖2

s.t. yi(w · xi + b)− 1 ≥ 0 for i = 1, ..., n
(8)

We have added the factor 1
2 and squared ‖w‖ here. This does

not change where we find the minimum, however it simplifies
the formula later on.

This is a constrained optimization problem for which we
will use Lagrange multipliers to find a solution. First we



f(x, y) = c0

f(x
, y

) = c
1

f(x
, y

) = c
2

f(x
, y

) =
c 3

g(x,
y) = 0

Fig. 3: An example showing the idea of Lagrange multipliers. We would like
to minimize the function f with the condition that g(x, y) = 0 holds. Shown
are some height levels for f in blue and the points where the constraint is
fulfilled in red. The arrows show the gradients. The minimal value will be
found where the gradients of f and g are parallel.

will understand how they work for a problem with equality
constraints, i.e., satisfying a function g(x) = 0, before
moving on to inequality constraints of the form g(x) ≤ 01.

The idea of Lagrange multipliers is the following: imagine
we have a function f(x, y), which we would like to minimize
given a constraint g(x, y) = 0, i.e., our minimum must fulfill
this condition to be valid. We can imagine that we walk along
the line where the condition for g holds. Then we will reach the
minimum of f under that constraint where the gradients of f
and g are parallel. If this wasn’t the case, because the gradient
always points in the direction with the steepest incline, we
could walk further along one direction on g to decrease f
further. In other words, we look for points where the gradients
are multiples of each other:

∇x,yf = −λ∇x,yg (9)

where λ is a so-called Lagrange multiplier. It is needed here
so that the two vectors can have different lengths and may
show in opposite or equal directions, while still keeping them
parallel. This concept is shown in Figure 3. The red line shows
where the constraint is met. The blue ovals are the contours
for the function f at various levels. In three dimensions, f
would look like a cone with its lowest point at the middle.
The arrows belonging to the functions show the gradients.
There is one point shown where the gradients show in exactly
opposite directions. This is the minimum of f under the given
constraint. It should also be noted that this method will give
us necessary conditions for extrema. It works the same way
for maximization problems and will thus generally find the
minimum and maximum of a function, even if we only want

1Our constraints are currently of the form g(x) ≥ 0, so we will just
multiply them with −1 later on

one of these. This is not a problem, however, as we can just
compare the values for f at those points and take the smaller
one.
A more compact way of expressing our wish to find parallel
gradients and points which satisfy the constraints is with the
Lagrange function:

L(x, y, λ) = f(x, y) + λg(x, y) (10)

We solve for the gradient of this function being equal to zero

∇x,y,λ L(x, y, λ) = 0 (11)

If we take the partial derivatives, we see that this is equal to
setting the gradients of f and g equal, while also solving for
g(x, y) = 0.

Inequality constraints work similarly, we can imagine two
cases for where the minimum of f lies:

• The minimum is at the border of where the inequality
is true. In this case, the constraint will be an equality
constraint, so g(x, y) = 0 will hold. Then we know how
to find the minimum via the parallel gradients. Also,
λ ≥ 0 must hold. The gradients will point in opposite
directions.

• The minimum is somewhere where g(x, y) < 0. This
means the point will be a local minimum of f , so ∇f =
0. The gradients are equal ⇐⇒ λ = 0.

From the two cases above we can see that g(x, y) ∗ λ = 0
and λ ≥ 0 must always be true.

The topic of Lagrange multipliers can be quite complex, but
we now have an intuitive understanding as to why this method
works. More information can be found in other literature [4].
We now generalize this concept to work in an arbitrary number
of dimensions and use an arbitrary number of constraint
functions. With f(w) = ‖w‖2 = w · w, we formulate the
Lagrange function for our optimization problem:

L(w, b,Λ) =
1

2
w ·w −

n∑
i=1

αi[yi(w · xi + b)− 1] (12)

Where Λ = (α1, ..., αn)T is a vector corresponding to the
Lagrange multipliers – one for each constraint in 7. The points
where the gradient is zero will be at saddle points of the
function. We can see this in the above function via a different
intuition of Lagrange functions. If we first maximize the above
function with respect to Λ ≥ 0 we get

max
Λ

L(w, b,Λ) =

{
f(w), if all constraints are satisfied
+∞, otherwise

(13)
This is because if the constraints aren’t met, we can choose
an arbitrarily large value for α. If they are met, then the entire
sum will be zero, as we have concluded after examining both
possible cases for where the minimum can lie.
If we then minimize this function with respect to w and b we



get the minimum of f with all our constraints satisfied. Which
means we now want to solve:

min
w,b

max
Λ

L(w, b,Λ)

subject to Λ ≥ 0 ⇐⇒ αi ≥ 0, i = 1, ..., n
(14)

To obtain a minimum we will check where the partial deriva-
tives of L for w and b respectively are zero:

∂ L
∂w

= w −
n∑
i=1

αiyixi = 0 (15)

∂ L
∂b

= −
n∑
i=1

αiyi = 0 (16)

From 15 it follows that

w =

n∑
i=1

αiyixi (17)

This last equation is extremely interesting, as it shows
us where the SVM gets its name from. Our training data
x1, ..., xn is used as a linear combination to form the plane
w, i.e., they act as support vectors for the plane. An αi
will be non-zero exactly if it is a support vector. Then the
minimum of the optimization lies directly on the boundary
of that ith constraint function, which means the constraint
function will have a value of zero at that point. If we recall
the visuals of separating points and maximizing the margin,
these training points are exactly those which will be closest
to the hyperplane. Most vectors won’t contribute though, they
will have an αi = 0

We now substitute back into 12 to obtain:

L(b,Λ) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj − b
n∑
i=1

αiyi

(18)
Lastly, using 16 we see that the last term must be zero. It
won’t contribute to the final result, so we instead include it as
another condition to our maximization problem. We arrive at:

max
Λ

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj

s.t. Λ ≥ 0
n∑
i=1

αiyi = 0

(19)

as the final optimization problem. The interesting thing is,
that using the Lagrange multipliers we have arrived at a
very different problem which will give us the solution to
the original problem. This is known as the duality principle:
our optimization problem can be viewed in different ways,
and some are easier to solve than others. We also implicitly
swapped the order of minimization and maximization in the
former steps. Usually, the dual problem only gives us a lower
bound to our minimization problem, but in this case, the
Karush-Kuhn-Tucker conditions hold, which means we get

strong duality: solving this dual problem gives us the same
result as solving the former primal problem. The advantage
of this form is that after rewriting it using matrices [2], it can
then be solved using quadratic programming, for which there
exist efficient algorithms.

We have now arrived at a point where we can solve the
problem of maximizing the margin for our hyperplane. We
should note that we have assumed that such a hyperplane can
be found, i.e., our data is linearly separable. However, this is
not always the case. We will now look at ways to deal with
those cases.

III. NON-LINEARLY SEPARABLE DATA

Our system right now only works if we can linearly separate
our data points. In two dimensions this means having a straight
line separating the data perfectly; in three dimensions it would
be a plane separating our data. In the real world we can
easily think of two reasons this might not hold. One is that
our data has outliers. This means there are data points which
look like they should belong to one class, but actually don’t.
The other reason might be that there is a clear distinction
between the two classes, yet the boundary can’t be represented
by a hyperplane. A two-dimensional example would be a
circle representing one class being inside of another circle
representing the other class. While both problems could be
solved with just one of the following two methods, we see
that each solution has a clear pattern of ’mixed’ data that it
will excel on.

A. Soft-margin SVM

To tackle the problem of statistical outliers, we realize that
we might not actually want our SVM to classify this data
correctly. After all, if the SVM sees such a combination of
features in the future, we probably would like it to assume
that everything is as normal, and the data is not a statistical
outlier. This introduces the notion of slack variables. These
allow the SVM to make some errors. Points can now lie within
the margin (hence the name soft-margin SVM) and possibly
even on the wrong side of the hyperplane. We therefore modify
our constraints defined in 7 to:

yi(w · xi + b)− 1 ≥ −ξi for i = 1, ..., n

ξi ≥ 0 for i = 1, ..., n
(20)

One can see that we could just choose large values for ξ and
our constraints will always be fulfilled. That’s why we need
to find a balance between acceptable errors and accuracy, we
include our slack variables in our minimization problem 8:

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(w · xi + b)− 1 ≥ −ξi for i = 1, ..., n

ξi ≥ 0 for i = 1, ..., n

(21)

We have added another factor C here. This can be used later
on to choose how the errors should be weighted. For example,



SVM C value:
100
1

Fig. 4: Two different C values yield very different results for the hyperplane.
The model resulting in the red hyperplane heavily punishes the use of slack
variables, while the model with the green hyperplane balances these two
values. The green hyperplane will generalize better, as it ignores statistical
outliers.

we can set it to a very large value to receive a hard-margin
classifier again. We see how slack variables and the choice of
C can affect the resulting hyperplane in Figure 4. Technically,
this example is linearly-separable, however, it shows that slack
variables are also very important for noisy data. The red
hyperplane is the result of choosing a high value for C, 100.
The result is, that correctly classifying every single data point
is very important. Therefore, the hyperplane is squeezed just
between the two points of the different classes. The green
hyperplane results from a model with a more modest C value
of 1. As we can see, it actually wrongly classifies one orange
x, as it lies on the same side of the line as the blue dots. But
arguably, the green boundary still seems better. It correctly
treats the orange x as an outlier in exchange for a line with a
more even distance from the groups.

The control we get through this is very valuable, as it
allows us to tweak the SVM and push its decision boundary
in the right direction based on our knowledge. Also, the
resulting optimization problem 19 hardly changes at all. The
only difference is, that the condition Λ ≥ 0 changes to
0 ≤ Λ ≤ 1C.
We now have a way to deal with statistical outliers and will
now turn to the second type of non-linear problems.

B. The Kernel method

Maybe the data we are dealing with inherently doesn’t
have a linear separation. In two dimensions we could imagine
a curved line separating our data. As an example, look at
Figure 5a.

As we can see, in the two-dimensional space the lower-left
and upper-right samples form two different classes which we
can separate with a bent line, but it is not possible to separate
these with a straight line. Our slack variables will also not
be the right tool, they will allow us to find a straight line,

1 2 3 4 5
x1

1

2

3

4

5

x2

(a) Two classes of data separated by a
rounded boundary. A straight line could
not separate the two classes without error.

x10 5 10 15 20 25
x2 0

10
20

x3

0

5

10

15

20

(b) The data points are transformed to a
three dimensional space in which we can
separate the data with a plane.

Fig. 5: Some data can only be separated once transformed to a higher
dimension.

but that boundary won’t be good at capturing the underlying
structure of our data. Instead, we will use the kernel method.
The main idea is to transform the data into a higher dimension
and then find a hyperplane in that space. It can be shown that
every dataset may be linearly separated if transformed into a
high enough dimension. We therefore look for a non-linear
projection Φ : Rp → Rf , f > p which takes a data point x
from the input space to a new, so called feature space. We
then find a hyperplane in the feature space.
A simple transformation for our example is Φ : R2 →
R3, (x1, x2) 7→ (x21,

√
2x1x2, x

2
2) which has the effect of

straightening out points which lie on an arc around the origin.
We see the resulting transformation in Figure 5b.

Here we can clearly see that there is a plane separating our
two classes of data. The plane we use can be transformed back
to input space as well and forms the round outline we saw in
Figure 5a where it ’cuts’ the x1, x2 plane.
Regarding the optimization problem, this simply translates to
replacing the occurrences of xi ·xj with Φ(xi) ·Φ(xj) in 19.
This will work, but it isn’t optimal. In the example we found a
simple solution to our problem. However, the process of first
transforming our space and then calculating the distance in a
potentially very high dimensional space can get very complex
and slow. Instead of converting our points to a new space and
calculating the distance there, it sometimes is possible to skip
those steps and calculate the distance in feature space directly.
That is, we must find a function K such that:

K(xi,xj) = Φ(xi) · Φ(xj) for i, j = 1, ..., n (22)

For our example, there exists such a function, namely:

K(a, b) = (a · b)2

= (a1b1 + a2b2)2

= a21b
2
1 + 2a1b1a2b2 + a22b

2
2

= (a21,
√

2a1a2, a
2
2)T · (b21,

√
2b1b2, b

2
2)T

= Φ(a) · Φ(b)

(23)



We have renamed our vectors to a and b here for clearer
notation. If we can find such a function for the transformation,
this will have a very large impact on the runtime of the
algorithm and is indispensable for real life datasets.
We can take this idea even further, by not even knowing which
theoretical transformation our kernel does. There are kernels
which map to infinitely dimensional space, yet they are still
easy to deal with for computers. It can be shown that we can
use any symmetric and positive definite function as a kernel,
the mathematical reasoning for this is not covered here, but
can be found in other literature [5].

C. Bringing it back together

With both of these modifications we turn back to our
optimization problem 19. Incorporating both changes gives us
our final optimization problem:

max
Λ

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)

s.t. 0 ≤ Λ ≤ 1C
n∑
i=1

αiyi = 0

(24)

As we can see, we hardly had to change our formula 19 at all,
yet the new possibilities are immensely important for solving
real life categorization problems. As a last question, we might
wonder what the best kernel for our data is and which value
we should choose for C. The answer to this question often
depends on the data itself and goes beyond the scope of this
paper. But much research has been done on this topic and the
choice for these so-called hyperparameters can be seen as a
minimization problem itself [6].

IV. MULTI-CLASS SVMS

We now turn our focus to multi-class SVMs. As the name
implies, instead of just having two classes we can have an
arbitrary number of classes to distinguish. The two most well-
known methods will be covered here: One-against-the-rest and
One-against-one. The basis for both of these still is the two
class SVM. There have been efforts to create models which
take into account all classes at once, however due to the much
more complex optimization problem it does not seem suitable
in its current form, since training times are mostly higher and
the accuracy isn’t necessarily better [7].

A. One-against-the-rest

Assuming now that we have n classes for our data, we will
construct n different classifiers. The i-th classifier will be a
regular two-class classifier which separates the class i from all
n − 1 other classes via a hyperplane, hence the name. It can
happen that multiple classifiers predict the new data point to
be in its corresponding class. Either we accept this, or we use
the winner-takes-all approach, in which we usually measure
the distance to the hyperplanes and choose the one with the
highest distance.

B. One-against-one

In this method we have n(n−1)
2 different two-class SVMs.

Each one represents the distinction between only two of the
n classes. To determine the class, the usual approach is to use
max-win voting. When we predict on a new data point, we
let every classifier predict which of the two classes it thinks
the point should be part of. We then increase the vote for that
class by one. The class with the highest vote wins.

C. Comparison of multi-class methods

From empirical comparisons [7], [8] the common consensus
is that both methods yield similar results. However, even
though we need more classifiers in the second method, due to
the lower sample count the training time is usually lower. This
is also noted as the reason for why the popular SVM library
LIBSVM uses one-against-one [9]. Practically speaking, it is
difficult to say which method is best, as each one will behave
differently based also on which kernel and C value is used,
for example. For now, a good rule of thumb seems to be to
just go with one-against-one until a clearly superior method
is found.

V. SUMMARY AND OUTLOOK

In this paper we have seen how Support Vector Machines
work. From the simple idea of constructing a hyperplane with
maximum distance to the closest datapoints, over extensions to
allow this idea to also work with non-linearly separable data,
to multi-class SVMs which can be utilized for a multitude
of day-to-day problems. We can now understand, why one
strong point of SVMs is that they are very efficient. After
training a model, which means finding the weights for the
support vectors, we can simply store these vectors which will
usually only be a very small fraction of the original training
set, resulting in a small file size. This also allows them to be
used in embedded systems, like a raspberry pi for example
[10].
SVMs are also suitable for regression, which opens up many
more possible applications of this technology [11]. These
expansions to the base idea of SVMs certainly exist because
the concept is easy to visualize on a basic level. They offer an
intuitive way to think about them, also giving opportunity for
further research. Because of these reasons, SVMs deservedly
get a spot in many data scientist’s toolboxes.

REFERENCES

[1] R. Gupta, A. Rastogi, M. Chandel, and R. Ahemad, “A machine learning
approach for detection of fraud based on svm,” International Journal of
Scientific Engineering and Technology, vol. 1, p. 194, 07 2012.

[2] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, Sep 1995. [Online]. Available:
https://doi.org/10.1023/A:1022627411411

[3] K. Alexandre, Support Vector Machines Succinctly, 2017.
[Online]. Available: https://www.syncfusion.com/ebooks/support vector
machines succinctly

[4] D. KALMAN, “Leveling with lagrange: An alternate view of constrained
optimization,” Mathematics Magazine, vol. 82, no. 3, pp. 186–196,
2009. [Online]. Available: http://www.jstor.org/stable/27765899

[5] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in
machine learning,” Ann. Statist., vol. 36, no. 3, pp. 1171–1220, 06 2008.
[Online]. Available: https://doi.org/10.1214/009053607000000677

https://doi.org/10.1023/A:1022627411411
https://www.syncfusion.com/ebooks/support_vector_machines_succinctly
https://www.syncfusion.com/ebooks/support_vector_machines_succinctly
http://www.jstor.org/stable/27765899
https://doi.org/10.1214/009053607000000677


[6] R. Stecking and K. B. Schebesch, “Comparing and selecting svm-kernels
for credit scoring,” in From Data and Information Analysis to Knowledge
Engineering, M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nürnberger, and
W. Gaul, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 542–549.

[7] Chih-Wei Hsu and Chih-Jen Lin, “A comparison of methods for multi-
class support vector machines,” IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, March 2002.

[8] K.-B. Duan and S. S. Keerthi, “Which is the best multiclass svm
method? an empirical study,” in Multiple Classifier Systems, N. C. Oza,
R. Polikar, J. Kittler, and F. Roli, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 278–285.

[9] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, May 2011.
[Online]. Available: https://doi.org/10.1145/1961189.1961199

[10] G. E. Sakr, M. Mokbel, A. Darwich, M. N. Khneisser, and A. Hadi,
“Comparing deep learning and support vector machines for autonomous
waste sorting,” in 2016 IEEE International Multidisciplinary Conference
on Engineering Technology (IMCET), 2016, pp. 207–212.

[11] H. T. Nguyen, S. S. H. Ling, and H.-k. Lam, Computational Intelligence
And Its Applications: Evolutionary Computation, Fuzzy Logic, Neural
Network And Support Vector Machine Techniques. Singapore, SINGA-
PORE: World Scientific Publishing Company, 2012.

https://doi.org/10.1145/1961189.1961199

	Introduction
	Two-class SVMs
	Finding the best hyperplane
	Maximizing the margin

	Non-linearly separable data
	Soft-margin SVM
	The Kernel method
	Bringing it back together

	Multi-class SVMs
	One-against-the-rest
	One-against-one
	Comparison of multi-class methods

	Summary and Outlook
	References

