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How do people in�uence each other? Why might an opinion spread through a network?
And how do these answers change under di�erent payo� models and network structures?
We will give mathematical models to answer these questions involving social structures.

1 Preliminaries1

A network is modeled as an undirected graph G:

• Vertices represent agents/players: N = {1, ..., n} .

• Edges represent a relationship between two agents.

Players can take actions:

• The action space A = A1 × ... × An, represents available
actions for each agent. For simplicity we only cover binary
action games Ai = {0, 1} ,∀i ∈ N .

• An action pro�le a = (a1, ..., an) ∈ A, denotes actions
taken by each agent i from their set of actions Ai.

• ui(a) denotes agent i's utility/payo� in action pro�le a.
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Fig. 1.1: A network with n = 7.
Agents playing action 1
are shown bold.

Agents only interact with and are in�uenced by their neighborhood :

• The neighborhood Ni ⊆ N denotes the players which i has a relationship to.

• An agent's utility only depends on their own action and the number of 0 and 1 actions taken
by agents in their neighborhood.

• The degree di = |Ni| represents the number of neighbors i has.

• zi(b, a−i;G) ∈ {0, ..., n} denotes how many neighbors of player i play action b, and similarly
fi(b, a−i;G) ∈ [0, 1] denotes the fraction of agents in i's neighborhood playing action b.

A simple example is given in Figure 1.1. For agent 3, one of their three neighbors plays action 1.
In general, there are two main settings imaginable for how the utility behaves. With an increase

of neighbors taking action 1, the payo� of playing 1 vs 0 can either (weakly) increase or decrease,
we will examine both cases in the following.

1 All de�nitions are based on [1, 2] and are marked explicitly if taken verbatim from there.
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2 Public Goods Game 2

2 Public Goods Game

From an economic standpoint, a public good can be �used� by more than one person and using it
multiple times does not decrease its value. In a setting of networks, this could be something bought
by one person, but is then used by people in their neighborhood as well. E.g.: a video streaming
service subscription can also be used by friends of the buyer. This motivates our �rst de�nitions.

De�nition 1. Strategic substitutes [1]: A network game on graph G with binary actions 0 and 1
satis�es strategic substitutes if, for every agent i,

ui(1, a
′
−i)− ui(0, a

′
−i) ≤ ui(1, a−i)− ui(0, a−i),

for all a′−i and a−i such that fi(1, a
′
−i;G) ≥ fi(1, a−i;G).

Intuitively, the more neighbors already play action 1, the less bene�cial it is to play action 1
compared to action 0.

De�nition 2. Public goods game (PGG) [1]: The public goods game on graph G is a network
game parameterized by cost c, with 0 < c < 1. Agent i's utility is

ui(ai, a−i) =


1− c if ai = 1,

1 if ai = 0 and fi(1, a−i;G) > 0, and

0 if ai = 0 and fi(1, a−i;G) = 0.

The public goods game satis�es the strategic substitutes property, as playing action 1 compared
to 0 will yield a di�erence of 1− c if no neighbor plays 1 and a di�erence of −c otherwise.
Theorem 1. Per [1]: An action Pro�le is a pure-strategy Nash equilibrium in the public goods game
on graph G if and only if X1 = {i : ai = 1} is a maximal independent set on graph G.

A maximal independent set (MIS) is a set of vertices on a graph G where no two vertices of
said set have a common edge (they are independent) and no vertex can be added to the set without
violating the independence property (the set is maximal).

The theorem can thus be interpreted as the best strategy being to play action 1 and therefore
�paying� for the good only if no neighbor plays 1. Because if a neighbor already pays for the good,
one can simply �freeride�. Given this equivalence, �nding a Nash equilibrium is as simple as �nding
a MIS, which can be done with Algorithm 1. An example of a NE in a PGG is seen in Figure 2.1.

Algorithm 1 Find a NE in a PGG

Input: Graph G de�ned on agents N
Variables: R: the set of unassigned agents;

ai: the action of agent i

1: R := N , ai := 0 for all i
2: while R 6= ∅ do
3: i := agent selected randomly from R
4: ai := 1
5: R := R− {i ∪Ni}
6: end while

7: return (a1, ..., an)
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Fig. 2.1: A network with vertices of a MIS shown
bold. The MIS corresponds to a NE of a
PGG if the agents of that set play 1.
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3 Coordination Game

Contrary to PGGs, in coordination games one wants their neighborhood to play the same action
as oneself. Common examples are the adoption of technology, language, etc.

De�nition 3. Strategic complements [1]: A network game on graph G with binary actions 0 and
1 satis�es strategic complements if, for every agent i,

ui(1, a
′
−i)− ui(0, a

′
−i) ≥ ui(1, a−i)− ui(0, a−i),

for all a′−i and a−i such that fi(1, a
′
−i;G) ≥ fi(1, a−i;G)

The key (and only) di�erence to strategic substitutes is the direction of the weak inequality
term in the �rst part of the de�nition. The more neighbors play action 1 vs action 0, the more
bene�cial it becomes to play action 1 oneself.

De�nition 4. Coordination game [1]: The coordination game on graph G is a network game
parameterized by payo� q, with 0 < q < 1. Agent i's utility is

ui(ai, a−i) =

{
(1− q) · zi(1, a−i;G) if ai = 1, and

q · zi(0, a−i;G) if ai = 0.

Where q is the utility for each neighbor playing action 0 if player i also plays action 0, and vice
versa for (1− q) and action 1.

This game satis�es the strategic complements property, as the di�erence in utility for player i
playing action 1 vs 0 is

(1− q) · zi(1, a−i;G)− q · zi(0, a−i;G) = zi(1, a−i;G)− q · di,

which strictly increases with the number of neighbors who play action 1.
We see that the term will be (weakly) positive for zi(1, a−i;G) ≥ q · di ⇐⇒ fi(1, a−i;G) ≥ q,

in words, once the fraction of players in the neighborhood of agent i playing 1 is greater than q.
Action 1 is therefore a best response if at least fraction q of the agent's neighborhood plays 1 and
action 0 is a best response otherwise. Knowing when an action is a best response, we are interested
in Nash equilibria. The following property of a set of players is very useful for this.

De�nition 5. Cohesiveness: On an undirected graph G the cohesiveness of a set of players X is

cohG(X) = min
i∈X

|Ni ∩X|
|Ni|

Intuitively, the cohesiveness gives a lower bound on how �well connected� a set of players is, by
measuring for each agent of the set the fraction of neighbors who are also in the set, and taking the
minimum of those values.

Theorem 2. Per [1]: An action pro�le a is a pure-strategy Nash equilibrium in the coordination
game with parameter q on graph G if and only if the sets X0 = {i : ai = 0} and X1 = {i : ai = 1}
satisfy:

1. cohG(X0) ≥ 1− q, and

2. cohG(X1) ≥ q.

In words, in a Nash equilibrium of a coordination game, every player must have enough neighbors
who play the same action as themselves such that their action is a best response.
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4 Hard-Threshold Cascades

From the coordination games we see how agents might in�uence each other once a certain threshold
of neighbors playing a certain action is reached. If this causes other agents to change their action,
this explains how an action/opinion might cascade through a network. We therefore introduce a new
model in which we will study 0 to 1 cascades happening over discrete time periods t ∈ {0, 1, 2, ...}.
• A full cascade occurs if at the end of the cascade all players have adopted action 1.

• A partial cascade occurs if at the end of the cascade some players switched from action 0 to
1 but none from 1 to 0.

De�nition 6. Hard-threshold cascade model: On an undirected graph G with threshold parameter
0 < q < 1 and a seed set S of agents, let time period t = 0 be the initialization period. Then an
agent selects an action in period t ≥ 0 according to the rules:

• Each seed agent i ∈ S plays action 1.

• All other agents i ∈ N \ S play: 0 in t = 0 and for period t > 1 play action 1 if fraction q or
more agents in Ni play 1 in period t− 1 (tie breaks in favor of action 1), and 0 otherwise.

The hard-threshold cascade terminates in the �rst period where no agent has changed their action.

Theorem 3. Per [1]: The set of agents who play 1 is monotonically non-decreasing in each period
of the hard-threshold cascade model, and the process terminates.

We relate this model and the coordination game by introducing the restricted coordination game,
which adds the constraint to the coordination game that agents in the seed set can only play action
1. For a Nash equilibrium we only expect of non-seed agents to play a best response.

Theorem 4. Per [1]: A hard-threshold cascade with threshold q and seed set S terminates with a
Nash equilibrium of the restricted coordination game with payo� parameter q.

Knowing this, we are interested in determining when a seed set might create a full cascade.
Once more, the cohesion gives an important insight.

Theorem 5. Per [1]: There is a full cascade from seed set S in the hard-threshold cascade model
on graph G and with threshold q if and only if there is no set T ⊆ N \S for which cohG(T ) > 1− q.

Therefore, we can view a set T with such a property as blocking a full cascade. An example
cascade is shown in Figure 4.1. The seed agents 3 and 6 cause a partial cascade.
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Fig. 4.1: An example of the hard-threshold cascade model with q = 2/5 and S = {3, 6}. Agents
playing 1 shown bold. (a) The initialization period. (b) The �nal actions after the cascade.
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5 Independent Cascades

In contrast to the hard-threshold cascade model before, we could imagine a setting where agents
switch from 0 to 1 with some probability whenever one of their neighbors switches from 0 to 1.
This makes sense when modeling word-of-mouth e�ects or the spread of diseases.

De�nition 7. Independent-cascade model: On a weighted and directed graph G we de�ne the
independent-cascade model. There is a set of seed agents S. An agent is activated in period t if they
adopt action 1 for the �rst time in period t, or they are a seed agent and t = 0, the initialization
period. The weight pij , with 0 < pij < 1, for a directed edge from i to j denotes the in�uence
probability of i on j. Agents select their action in period t ≥ 0 as follows:

• Each seed agent i ∈ S plays action 1.

• All other agents i ∈ N \ S play: 0 in t = 0 and 1 if they played 1 in period t − 1. If player
i played action 0 in t − 1, consider each neighbor j ∈ Ni who was activated in period t − 1
(including seeds if t = 1), adopt action 1 with probability pji.

It is interesting to determine how good a seed set is at causing a cascade (and therefore in�u-
encing others). We denote with LG(S) a random variable corresponding to the set of agents playing
action 1 at the end of a cascade from seed set S.

De�nition 8. In�uence function: The in�uence function gives the expected independent-cascade
size (including seeds):

hG(S) = E
[∣∣LG(S)

∣∣] .
A logical next step is trying to optimize the initial seed set to maximize this in�uence.

De�nition 9. In�uence-maximization problem (Influence): The in�uence-maximization problem
(Influence) for a directed and weighted graph G and cardinality k ≥ 1 is de�ned as solving

max
S⊆N :|S|≤k

hG(S).

It is, however, di�cult in practice to optimize this. Just evaluating the in�uence function is
already non-trivial [3]. We can formalize the hardness of this problem if we look at the decision
version of Influence, i.e., answering the question if there is a seed set S with hG(S) ≥ w, for some
value w and cardinality k.

Theorem 6. Per [1]: Influence in the independent-cascade model is NP-hard.
This can be shown via a reduction of the set-cover problem.

While this strongly suggests that there is no �fast� algorithm for �nding a solution, there are
greedy algorithms which can �nd good approximate solutions. One such algorithm always adds the
agent i to the seed set S which will maximize hG(S ∪ {i}) for that iteration. This is done k times.
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